Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.
![Comparative analysis of our approach with state-of-the-art methods by exploiting specific videos such as “HumanBody1-HB” and “HallAndMonitor-HM” from the SBI2015 dataset. The left-to-right layout shows results for: original, ground truth, DeepBS [27], SC_SOBS [25], SuBSENSE [24], GMM_Zivk [26}, as well as our method. The results for NThr=4 are displayed in this figure](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/67f3415f8d1bec042eac83d9/j_ama-2025-0013_fig_007.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKGAZAUNDW%2F20251217%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251217T040724Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEKr%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaDGV1LWNlbnRyYWwtMSJHMEUCIQC1gKSrsjV4qfRFGP122FFE7vZZZkOZrNO6X86bfbGzPwIgVzEUCTdAsFJYFhycN8gTF3VWLdKiznc00tUCTRbRYOEqvAUIcxACGgw5NjMxMzQyODk5NDAiDNubCk1KyP%2BR79GfHSqZBQrhsYe2GcCDdJNtLHRXeYDM4iwHodUaGbYY8NUFGE36Kd0bMajlYZAmqEwD4nrIwuILJfIOCfcH8yXrFQ3YDUbCvDlpRx6dWNYzQ3gWcb8ZCrB6XwBbO5hLQVl9A90KovyVtlorCcft1WoQBnNz9S1UZIk7ycijbM51lH46x%2B6a6BzVek2Bl0KvsHGxZIliUnGF%2FE7ptqx0jrXWFjIbQD2klQQd8gFwzDyPUkv%2FTk3K2S3jPiHY%2FsYrFpIVAtRHghg443GqEnACIsdXNKmkQOKR6GMs1aLi%2FZ9%2FUV25Ee74HlxAjpfP9OkZsfd8nSJHoY9kBIaoDKRkmeVpHGz2UU9zl1TJ6iz9W8AfZFqFKgfMOLDFjcA1v8HIvVkbVz6qxmQ8jYBmS4nvQVMmE9LogJkynJcDMPmS7owra5O0KeAbtu6OKLlJZedztEF2ppKVWFYFPf8of3%2FP%2F6BOj8tTXrsMxQP2LglaiY4Mm1ZRQu8GuC88JGqKKrWWIEJqZ3pxDhkE%2F4ZEIVWapcpEef%2BFJjYkql6T%2BTPwpaDXY%2B1O85KilHH9rvDeb%2FZeyaR2yy22JOm9aviM0I%2BJGDuQBYCIZabb6NVdirSAStGFbYUbkQmEnqX%2F%2FhNzRz7VraIwTmTyx7fOw3jO6Es%2BRRB7a%2B8U2zjelZc4RvvVr4vB4h5wl6gZYcJW0hXpSvhw2qdMmVeZm1j%2FOhNI53xbKC%2B%2FF6XBe%2BGxSBAM4DUXTV6RpKiBuCk5vrzYaooWe1vk8vmNtTvZ4saVSWd%2B4Y8e0326%2FhLSTTrr%2F45zPQVAecAEoQ6%2Fb6aWJ%2BE2sMp1lpkfR51mFDFxhni%2Bc4MWpPai8EhTbR44FZohLPkLUiSYZNIw273hhkfdKmtTNKWMPIrPMNCOiMoGOrEBrsJLXSWDM%2B12BUFvEOBVHg%2Bee1pfQNSVu61gSwnnfkENnuL6IKN9u8W0psbFaU%2FX5S75ldDdl47CczwUeseCfyXNlEQZjgro97Fe17PiD0K6HcD4kpwSVoJfWTSrcUft8xfnuQKs4NwoQibfOUbeIqcN4sOW6oov%2BIoyBDqIOYJhON%2FQpxB3gkZwdOhcaaPY0ik%2BCXoaCrYLVS8gjS%2FemhNXRAPVxhTE30OSSbcf7dxk&X-Amz-Signature=1bba4ddf2d392e6c1a9abe46e8d970c69fd8ecd8c8ce71a011330afe6bd02490&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Fig. 8.
![Comparative analysis of our approach with state-of-the-art methods by exploiting specific videos such as “SnowFall-SF”, “BusStation-BS” and “Canoe-CE” from the CDnet 2014 dataset. The left-to-right layout shows results for original, ground truth, DeepBS [27], SC_SOBS [25], SuBSENSE [24], GMM_Zivk [26], as well as our method, The results for NThr=4 are displayed in this figure](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/67f3415f8d1bec042eac83d9/j_ama-2025-0013_fig_008.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKGAZAUNDW%2F20251217%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251217T040724Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEKr%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaDGV1LWNlbnRyYWwtMSJHMEUCIQC1gKSrsjV4qfRFGP122FFE7vZZZkOZrNO6X86bfbGzPwIgVzEUCTdAsFJYFhycN8gTF3VWLdKiznc00tUCTRbRYOEqvAUIcxACGgw5NjMxMzQyODk5NDAiDNubCk1KyP%2BR79GfHSqZBQrhsYe2GcCDdJNtLHRXeYDM4iwHodUaGbYY8NUFGE36Kd0bMajlYZAmqEwD4nrIwuILJfIOCfcH8yXrFQ3YDUbCvDlpRx6dWNYzQ3gWcb8ZCrB6XwBbO5hLQVl9A90KovyVtlorCcft1WoQBnNz9S1UZIk7ycijbM51lH46x%2B6a6BzVek2Bl0KvsHGxZIliUnGF%2FE7ptqx0jrXWFjIbQD2klQQd8gFwzDyPUkv%2FTk3K2S3jPiHY%2FsYrFpIVAtRHghg443GqEnACIsdXNKmkQOKR6GMs1aLi%2FZ9%2FUV25Ee74HlxAjpfP9OkZsfd8nSJHoY9kBIaoDKRkmeVpHGz2UU9zl1TJ6iz9W8AfZFqFKgfMOLDFjcA1v8HIvVkbVz6qxmQ8jYBmS4nvQVMmE9LogJkynJcDMPmS7owra5O0KeAbtu6OKLlJZedztEF2ppKVWFYFPf8of3%2FP%2F6BOj8tTXrsMxQP2LglaiY4Mm1ZRQu8GuC88JGqKKrWWIEJqZ3pxDhkE%2F4ZEIVWapcpEef%2BFJjYkql6T%2BTPwpaDXY%2B1O85KilHH9rvDeb%2FZeyaR2yy22JOm9aviM0I%2BJGDuQBYCIZabb6NVdirSAStGFbYUbkQmEnqX%2F%2FhNzRz7VraIwTmTyx7fOw3jO6Es%2BRRB7a%2B8U2zjelZc4RvvVr4vB4h5wl6gZYcJW0hXpSvhw2qdMmVeZm1j%2FOhNI53xbKC%2B%2FF6XBe%2BGxSBAM4DUXTV6RpKiBuCk5vrzYaooWe1vk8vmNtTvZ4saVSWd%2B4Y8e0326%2FhLSTTrr%2F45zPQVAecAEoQ6%2Fb6aWJ%2BE2sMp1lpkfR51mFDFxhni%2Bc4MWpPai8EhTbR44FZohLPkLUiSYZNIw273hhkfdKmtTNKWMPIrPMNCOiMoGOrEBrsJLXSWDM%2B12BUFvEOBVHg%2Bee1pfQNSVu61gSwnnfkENnuL6IKN9u8W0psbFaU%2FX5S75ldDdl47CczwUeseCfyXNlEQZjgro97Fe17PiD0K6HcD4kpwSVoJfWTSrcUft8xfnuQKs4NwoQibfOUbeIqcN4sOW6oov%2BIoyBDqIOYJhON%2FQpxB3gkZwdOhcaaPY0ik%2BCXoaCrYLVS8gjS%2FemhNXRAPVxhTE30OSSbcf7dxk&X-Amz-Signature=b54baf68687b643e0ce88e5698a44413e58c80d760fc2ae5c0de34d1523189d4&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Fig. 9.
![Comparative analysis of our approach with state-of-the-art methods by exploiting specific videos such as “Highway-HG” and “Pedestrians-PD” from the CDnet 2014 dataset. The left-to-right layout shows results for original, ground truth, DeepBS [27], SC_SOBS [25], SuBSENSE [24], GMM_Zivk [26], as well as our method. The results for NThr=4 are displayed in this figure](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/67f3415f8d1bec042eac83d9/j_ama-2025-0013_fig_009.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKGAZAUNDW%2F20251217%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251217T040724Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEKr%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaDGV1LWNlbnRyYWwtMSJHMEUCIQC1gKSrsjV4qfRFGP122FFE7vZZZkOZrNO6X86bfbGzPwIgVzEUCTdAsFJYFhycN8gTF3VWLdKiznc00tUCTRbRYOEqvAUIcxACGgw5NjMxMzQyODk5NDAiDNubCk1KyP%2BR79GfHSqZBQrhsYe2GcCDdJNtLHRXeYDM4iwHodUaGbYY8NUFGE36Kd0bMajlYZAmqEwD4nrIwuILJfIOCfcH8yXrFQ3YDUbCvDlpRx6dWNYzQ3gWcb8ZCrB6XwBbO5hLQVl9A90KovyVtlorCcft1WoQBnNz9S1UZIk7ycijbM51lH46x%2B6a6BzVek2Bl0KvsHGxZIliUnGF%2FE7ptqx0jrXWFjIbQD2klQQd8gFwzDyPUkv%2FTk3K2S3jPiHY%2FsYrFpIVAtRHghg443GqEnACIsdXNKmkQOKR6GMs1aLi%2FZ9%2FUV25Ee74HlxAjpfP9OkZsfd8nSJHoY9kBIaoDKRkmeVpHGz2UU9zl1TJ6iz9W8AfZFqFKgfMOLDFjcA1v8HIvVkbVz6qxmQ8jYBmS4nvQVMmE9LogJkynJcDMPmS7owra5O0KeAbtu6OKLlJZedztEF2ppKVWFYFPf8of3%2FP%2F6BOj8tTXrsMxQP2LglaiY4Mm1ZRQu8GuC88JGqKKrWWIEJqZ3pxDhkE%2F4ZEIVWapcpEef%2BFJjYkql6T%2BTPwpaDXY%2B1O85KilHH9rvDeb%2FZeyaR2yy22JOm9aviM0I%2BJGDuQBYCIZabb6NVdirSAStGFbYUbkQmEnqX%2F%2FhNzRz7VraIwTmTyx7fOw3jO6Es%2BRRB7a%2B8U2zjelZc4RvvVr4vB4h5wl6gZYcJW0hXpSvhw2qdMmVeZm1j%2FOhNI53xbKC%2B%2FF6XBe%2BGxSBAM4DUXTV6RpKiBuCk5vrzYaooWe1vk8vmNtTvZ4saVSWd%2B4Y8e0326%2FhLSTTrr%2F45zPQVAecAEoQ6%2Fb6aWJ%2BE2sMp1lpkfR51mFDFxhni%2Bc4MWpPai8EhTbR44FZohLPkLUiSYZNIw273hhkfdKmtTNKWMPIrPMNCOiMoGOrEBrsJLXSWDM%2B12BUFvEOBVHg%2Bee1pfQNSVu61gSwnnfkENnuL6IKN9u8W0psbFaU%2FX5S75ldDdl47CczwUeseCfyXNlEQZjgro97Fe17PiD0K6HcD4kpwSVoJfWTSrcUft8xfnuQKs4NwoQibfOUbeIqcN4sOW6oov%2BIoyBDqIOYJhON%2FQpxB3gkZwdOhcaaPY0ik%2BCXoaCrYLVS8gjS%2FemhNXRAPVxhTE30OSSbcf7dxk&X-Amz-Signature=4777d9cd6fd8279f72bfbed29a1596a51bf579d3760276ab4ed69e8b23922fbe&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Fig. 10.

Fig. 11.

Fig. 12.

Comparative assessment of F-measure across four categories using four methods on the LASIESTA dataset_ Each row presents the results for a specific method, while each column displays the average scores for each category
| Methods | F-M | ||||
|---|---|---|---|---|---|
| I_SI | I_CA | I_BS | O_SU | Overall | |
| GMM [31] | 0.8328 | 0.8272 | 0.36941 | 0.7240 | 0.6880 |
| GMM_ | 0.9054 | 08320 | 0.5330 | 0.7100 | 0.7450 |
| Zivk [26] | |||||
| Cuevas [32] | 0.8805 | 0.8440 | 0.6809 | 0.8568 | 0.8155 |
| Our approach | 0.9089 | 0.8415 | 0.7021 | 0.8938 | 0.8390 |
Mean F-measure and standard deviations for different methods
| Methods | Mean F-M (µ) | Standard Deviation (σ) |
|---|---|---|
| MOD-BFDO | 0.8535 | 0.0920 |
| SuBSENSE [24] | 0.8257 | 0.1013 |
| DeepBS [27] | 0.8490 | 0.1296 |
| SC_SOBS [25] | 0.7158 | 0.1306 |
| GMM_Zivk [26] | 0.6696 | 0.1232 |
Results obtained by the proposed algorithm on the LASIESTA dataset
| Category | RE | PWC | F-M | PR |
|---|---|---|---|---|
| I_SI | 0.8969 | 0.5501 | 0.9089 | 0.9219 |
| I_CA | 0.7930 | 1.2835 | 0.8415 | 0.9250 |
| I_BS | 0.7015 | 0.4164 | 0.7120 | 0.7457 |
| O_SU | 0.8868 | 0.1917 | 0.8938 | 0.9038 |
| Average | 0.8195 | 0.6104 | 0.8390 | 0.8741 |
Z-scores for MOD-BFDO vs other methods
| Comparison | z-Score |
|---|---|
| MOD-BFDO vs SuBSENSE | 0.498 |
| MOD-BFDO vs DeepBS | 0.069 |
| MOD-BFDO vs SC_SOBS | 2.11 |
| MOD-BFDO vs GMM_Zivk | 2.93 |
Evaluation of our method on the CDnet 2014
| Category | RE | SP | FPR | FNR | PWC | F-M | PR |
|---|---|---|---|---|---|---|---|
| Baseline | 0.9577 | 0.9911 | 0.0021 | 0.0423 | 0.3634 | 0.9409 | 0.9432 |
| Bad weather | 0.8950 | 0.9970 | 0.0004 | 0.1053 | 0.5212 | 0.8834 | 0.8723 |
| Dy. Backg | 0.8839 | 0.9989 | 0,0013 | 0,2332 | 0,6121 | 0.9051 | 0.9272 |
| Shadow | 0,8704 | 0,9917 | 0,0082 | 0,1295 | 1,6663 | 0.8785 | 0,8869 |
| Cam. Jitter | 0.8154 | 0,9945 | 0,0057 | 0,1864 | 1,2627 | 0.8332 | 0.8515 |
| Law. Fram | 0.7610 | 0.9934 | 0.0061 | 0.2492 | 0.9064 | 0.6800 | 0.6146 |
| Average | 0.8639 | 0.9944 | 0.0039 | 0.1576 | 0.7220 | 0.8535 | 0.8492 |
Comparison of Average Frames Per Second (FPS) Across Three Source Video Sequences
| Methods | Size of video | ||
|---|---|---|---|
| 320×240 | 352×288 | 720×480 | |
| SC_SOBS [25] | 9.8 | 8.7 | 3.4 |
| SuBSENSE [24] | 3.3 | 2.8 | 1.6 |
| GMM _Zivk [26] | 21.6 | 18.1 | 13.8 |
| MOD-BFDO | 5.5 | 4.7 | 3.2 |
Comparative assessment of F-measure in six categories using four methods_ Each row presents results specific to each method; each column displays the average scores in each category
| Methods | F-M | ||||||
|---|---|---|---|---|---|---|---|
| Baseline | Bad weather | Dy. Backg | Shadow | Cam. Jitter | Law Fram | Overall | |
| DeepBS [27] | 0.9580 | 0.8301 | 0.8761 | 0.9304 | 0.8990 | 0.6002 | 0.8490 |
| SC_SOBS [25] | 0.9333 | 0.6620 | 0.6686 | 0.7786 | 0.7051 | 0.5463 | 0.7158 |
| SuB-SENSE[24] | 0.9503 | 0.8619 | 0.8177 | 0.8646 | 0.8152 | 0.6445 | 0.8257 |
| GMM_Zivk [26] | 0.8382 | 0.7406 | 0.6328 | 0.7322 | 0.5670 | 0.5065 | 0.6696 |
| MOD-BFDO | 0.9409 | 0.8834 | 0.9051 | 0.8785 | 0.8332 | 0.6800 | 0.8535 |
A comparison between our method and some of the most important existing methods on CDnet 2014 dataset
| Methods | Overall | |||
|---|---|---|---|---|
| Avg. RE | Avg. PR | Avg. PCW | Avg. F-M | |
| DeepBS [27] | 0.8312 | 0.8712 | 0.6373 | 0. 8490 |
| SC_SOBS [25] | 0.8068 | 0.7141 | 2.1462 | 0.7158 |
| SuBSENSE [24] | 0.8615 | 0.8606 | 0.8116 | 0.8257 |
| GMM _Zivk [26] | 0.7155 | 0.6722 | 1.7052 | 0.6696 |
| MOD-BFDO | 0.8639 | 0.8492 | 0.72202 | 0.8535 |