Have a personal or library account? Click to login
The Influence of Selected Brushing Process Parameters on the Tool's Operating Time Cover

The Influence of Selected Brushing Process Parameters on the Tool's Operating Time

Open Access
|Mar 2025

References

  1. Bałon P, Świątoniowski A, Rejman E, Kiełbasa B, Smusz R, Szostak J, Cieślik J. Zastosowanie cienkościennych konstrukcji integralnych w lotnictwie na przykładzie projektu SAT-AM. Zeszyty Naukowe Politechniki Rzeszowskiej. Mechanika. 2020;92(300): 5–17. https://doi.org/10.7862/rm.2020.01
  2. Wen-Hsien T, Yao-Chung Ch, Sin-Jin L, Hui-Chiao Ch, Po-Yuan Ch. A green approach to the weight reduction of aircraft cabins. Journal of Air Transport Management. 2014;40: 65–77. https://doi.org/10.1016/j.jairtraman.2014.06.004
  3. da Silva A, Jorge M, Ogashawara O. Weight reduction of amorphous alloy core electrical transformers for aircraft applications. In 2016 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC); 1–4: IEEE. https://doi.org/10.1109/ESARS-ITEC.2016.7841347
  4. Zeng Y, Li J, Lin S, He X, Li B, Deng T. Comparison of Manual Setting Weight Reduction and Topology Optimization of the Wing Tips of Electric Vertical Take-Off and Landing Aircraft. Applied Sciences. 2022;12(11): 5548. https://doi.org/10.3390/app12115548
  5. Yang S, Ordonez J. C. Aircraft Weight Reduction and Onboard Combined Power Cycle Efficiency Improvement-An Integrative Approach. In AIAA Aviation 2019 Forum 3470: Published Online 14 Jun 2019. https://doi.org/10.2514/6.2019-3470
  6. Uliasz M, Ornat A, Burghardt A, Muszyńska M, Szybicki D, Kurc K. Automatic Evaluation of the Robotic Production Process for an Air-craft Jet Engine Casing. Applied Sciences. 2022;12(13):6443. https://doi.org/10.3390/app12136443
  7. Ornat A, Uliasz M, Bomba G, Burghardt A, Kurc K, Szybicki D. Robotised Geometric Inspection of Thin-Walled Aerospace Casings. Sensors. 2022;22(9): 3457. https://doi.org/10.3390/s22093457
  8. Kurc K, Burghardt A, Gierlak P, Muszyńska M, Szybicki D, Ornat A, Uliasz M. Application of a 3D Scanner in Robotic Measurement of Aviation Components. Electronics. 2022;11(19): 3216. https://doi.org/10.3390/electronics11193216
  9. Glukhov G.E, Chernikov P.E, Karapetyan A.G, Konkov A.Y, Sharypov A.N. Automated management system of technological and production processes of the civil aviation air enterprise known as' the custom module'the operator. In Proceedings of the 34th International Business Information Management Association Conference-Vision 2020: Sustainable Economic Development and Application of Innovation Management from Regional expansion to Global Growth: 7297–7309.
  10. Szybicki D, Burghardt A, Kurc K, Gierlak P. Device for Contact Measurement of Turbine Blade Geometry in Robotic Grinding Process. Sensors. 2020;20(24): 7053. https://doi.org/10.3390/s20247053
  11. Burghardt A, Kurc K, Szybicki D, Muszyńska M, Nawrocki J. Robot-operated quality control station based on the UTT method. Open Engineering. 2017;7(1): 37–42. https://doi.org/10.1515/eng-2017-0008
  12. Burghardt A, Szybicki D, Gierlak P, Kurc K, Muszyńska M. Robotic Grinding Process of Turboprop Engine Compressor Blades with Active Selection of Contact Force. Tehnički vjesnik. 2022;29(1): 15–22. https://doi.org/10.17559/TV-20190710141137
  13. Sha J, Wang J, Hu H, Ye Y, Xu G. Development of an Accurate and Automated Quality Inspection System for Solder Joints on Aviation Plugs Using Fine-Tuned YOLOv5 Models. Applied Sciences. 2023;13(9): 5290. https://doi.org/10.3390/app13095290
  14. Bernabei M, Eugeni M, Gaudenzi P, Costantino F. Assessment of Smart Transformation in the Manufacturing Process of Aerospace Components Through a Data-Driven Approach. Glob J Flex Syst Manag. 2023;24: 67–86. https://doi.org/10.1007/s40171-022-00328-7
  15. Vasic M, Billard A. Safety issues in human-robot interactions. In 2013 IEEE International Conference on Robotics and Automation: 197–204. https://doi.org/10.1109/ICRA.2013.6630576
  16. Chinniah Y. (2016). Robot safety: overview of risk assessment and reduction. Advances in Robotics & Automation. 2016;5(01): 1–5. https://doi.org/10.4172/2168-9695.1000139
  17. Alvarado M.L. A risk assessment of human-robot interface operations to control the potential of injuries/losses at XYZ manufacturing company. 2002.
  18. Siying Yang, Yifan Zhong, Dawei Feng, Rita Yi Man Li, Xue-Feng Shao, Wei Liu. Robot application and occupational injuries: Are robots necessarily safer?. Safety Science. 2022;147: 105623. https://doi.org/10.1016/j.ssci.2021.105623
  19. Dhillon B.S, Anude O.C. Robot safety and reliability: A review, Micro-electronics Reliability. 1993;33(3): 413–429. https://doi.org/10.1016/0026-2714(93)90030-3
  20. Falandys K, Kurc K, Burghardt A, Szybicki D. Automation of the Edge Deburring Process and Analysis of the Impact of Selected Parameters on Forces and Moments Induced during the Process. Applied Sciences. 2023;13(17): 9646. https://doi.org/10.3390/app13179646
  21. Gusri A.I, Yanuar B, Yasir M.A. (2020). Burr Formation Analysis When Micro Milling Ti-6al-4v Eli Using End Mill Carbide Insert. PalArch's Journal of Archaeology of Egypt/Egyptology. 2020;17(9): 4061–4067.
  22. Matuszak J, Zaleski K. Warunki technologiczne procesu usuwania zadziorów z przedmiotów wykonanych ze stopów aluminium. Przegląd Mechaniczny. 2016;(12): 29–32. https://doi.org/10.15199/148.2016.12.5
  23. Kurniawan R, Kumaran S.T, Prabu V.A, Zhen Y, Park K.M, Kwak Y.I, Ko T.J. Measurement of burr removal rate and analysis of machining parameters in ultrasonic assisted dry EDM (US-EDM) for deburring drilled holes in CFRP composite. Measurement. 2017;110: 98–115. https://doi.org/10.1016/j.measurement.2017.06.008
  24. Kim Y.G, Kim K.J, Kim K.H. Efficient Removal of Milling Burrs by Abrasive Flow. International Journal of Precision Engineering and Manufacturing. 2021;22: 441–451. https://doi.org/10.1007/s12541-020-00455-0
  25. Makulavičius M, Petkevičius S, Rožėnė J, Dzedzickis A, Bučinskas V. Industrial Robots in Mechanical Machining: Perspectives and Limitations. Robotics. 2023;12(6): 160. https://doi.org/10.3390/robotics12060160
  26. Iglesias I, Sebastián M.A, Ares J.E. Overview of the State of Robotic Machining: Current Situation and Future Potential. Procedia Engineering. 2015;132: 911–917. https://doi.org/10.1016/j.proeng.2015.12.577
  27. Pandremenos J, Doukas C, Stavropoulos P, Chtabsolouris G. Machining with robots: a critical review. Proceedings of DET2011. 1–9.
  28. Denkena B, Bergmann B, Lepper T. Design and optimization of a machining robot. Procedia Manufacturing. 2017;14: 89–96. https://doi.org/10.1016/j.promfg.2017.11.010
  29. Klimchik A, Ambiehl A, Garnier S, Furet B, Pashkevich A. Efficiency evaluation of robots in machining applications using industrial performance measure. Robotics and Computer-Integrated Manufacturing. 2017;48: 12–29. https://doi.org/10.1016/j.rcim.2016.12.005
  30. Pan Z, Zhang H, Zhu Z, Wang J. Chatter analysis of robotic machining process. Journal of Materials Processing Technology. 2006;173(3): 301–309. https://doi.org/10.1016/j.jmatprotec.2005.11.033
  31. Schnoes F, Zaeh M.F. Model-based planning of machining operations for industrial robots. Procedia CIRP. 2019;82: 497–502. https://doi.org/10.1016/j.procir.2019.04.331
  32. Kim S.H, Nam E, Ha T.I, Hwang S.H, Lee J.H, Park S.H, Min B.K. Robotic machining: A review of recent progress. International Journal of Precision Engineering and Manufacturing. 2019;20: 1629–1642. https://doi.org/10.1007/s12541-019-00187-w
  33. Burghardt A, Kurc K, Szybicki D, Muszyńska M, Szczęch T. Monitoring the parameters of the robot-operated quality control process. Advances in Science and Technology. Research Journal. 2017;11(1): 232–236. https://doi.org/10.12913/22998624/68466
  34. Onstein I.F, Semeniuta O, Bjerkeng M. Deburring using robot manipulators: A review. In 2020 3rd international symposium on small-scale intelligent manufacturing systems (SIMS): 1–7. IEEE. https://doi.org/10.1109/SIMS49386.2020.9121490
  35. Posada J.R.D, Kumar S, Kuss A, Schneider U, Drust M, Dietz T, Verl A. Automatic programming and control for robotic deburring. In Proceedings of ISR 2016: 47st International Symposium on Robotics: 1–8. VDE.
  36. Hu J, Kabir A.M, Hartford S.M, Gupta S.K, Pagilla P.R. Robotic deburring and chamfering of complex geometries in high-mix/low-volume production applications. In 2020 IEEE 16th international conference on automation science and engineering (CASE): 1155–1160. IEEE.
  37. Bottin M, Cocuzza S, Massaro M. Variable Stiffness Mechanism for the Reduction of Cutting Forces in Robotic Deburring. Applied Sciences. 2021;11(6): 2883. https://doi.org/10.3390/app11062883
  38. Wang Q, Wang W, Zheng L, Yun C. Force control-based vibration suppression in robotic grinding of large thin-wall shells. Robotics and Computer-Integrated Manufacturing. 2021;67: 102031. https://doi.org/10.1016/j.rcim.2020.102031
  39. Zhu D, Feng X, Xu X, Yang Z, Li W, Yan S, Ding H. Robotic grinding of complex components: a step towards efficient and intelligent machining–challenges, solutions, and applications. Robotics and Computer-Integrated Manufacturing. 2020;65: 101908. https://doi.org/10.1016/j.rcim.2019.101908
  40. Matuszak J, Kłonica M, Zagórski I. Effect of brushing conditions on axial forces in ceramic brush surface treatment. In 2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAero-Space); 644–648: IEEE. https://doi.org/10.1109/MetroAeroSpace.2019.8869605
  41. Onstein I.F, Semeniuta O, Bjerkeng M. Deburring using robot manipulators: A review. In 2020 3rd international symposium on small-scale intelligent manufacturing systems (SIMS): 1–7. IEEE. https://doi.org/10.1109/SIMS49386.2020.9121490
  42. Korzyński M. Metodyka eksperymentu. Planowanie, realizacja i statystyczne operacowanie wyników eksperymentów technologicznych. Wydanie II. Wydawnictwa Naukowo-Techniczne; 2017.
  43. Chomsamutr K, Jongprasithporn S. Optimization parameters of tool life model using the Taguchi approach and response surface methodology. International Journal of Computer Science Issues (IJCSI). 2012;9(1):120.
  44. Bhushan R. K. Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites. Journal of cleaner production. 2013;39: 242–254. https://doi.org/10.1016/j.jclepro.2012.08.008
DOI: https://doi.org/10.2478/ama-2025-0008 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 61 - 69
Submitted on: Mar 27, 2024
Accepted on: Oct 10, 2024
Published on: Mar 31, 2025
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Karol Falandys, Tomasz Zymróz, Krzysztof Kurc, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.