References
- Bałon P, Świątoniowski A, Rejman E, Kiełbasa B, Smusz R, Szostak J, Cieślik J. Zastosowanie cienkościennych konstrukcji integralnych w lotnictwie na przykładzie projektu SAT-AM. Zeszyty Naukowe Politechniki Rzeszowskiej. Mechanika. 2020;92(300): 5–17.
https://doi.org/10.7862/rm.2020.01 - Wen-Hsien T, Yao-Chung Ch, Sin-Jin L, Hui-Chiao Ch, Po-Yuan Ch. A green approach to the weight reduction of aircraft cabins. Journal of Air Transport Management. 2014;40: 65–77.
https://doi.org/10.1016/j.jairtraman.2014.06.004 - da Silva A, Jorge M, Ogashawara O. Weight reduction of amorphous alloy core electrical transformers for aircraft applications. In 2016 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC); 1–4: IEEE.
https://doi.org/10.1109/ESARS-ITEC.2016.7841347 - Zeng Y, Li J, Lin S, He X, Li B, Deng T. Comparison of Manual Setting Weight Reduction and Topology Optimization of the Wing Tips of Electric Vertical Take-Off and Landing Aircraft. Applied Sciences. 2022;12(11): 5548.
https://doi.org/10.3390/app12115548 - Yang S, Ordonez J. C. Aircraft Weight Reduction and Onboard Combined Power Cycle Efficiency Improvement-An Integrative Approach. In AIAA Aviation 2019 Forum 3470: Published Online 14 Jun 2019.
https://doi.org/10.2514/6.2019-3470 - Uliasz M, Ornat A, Burghardt A, Muszyńska M, Szybicki D, Kurc K. Automatic Evaluation of the Robotic Production Process for an Air-craft Jet Engine Casing. Applied Sciences. 2022;12(13):6443.
https://doi.org/10.3390/app12136443 - Ornat A, Uliasz M, Bomba G, Burghardt A, Kurc K, Szybicki D. Robotised Geometric Inspection of Thin-Walled Aerospace Casings. Sensors. 2022;22(9): 3457.
https://doi.org/10.3390/s22093457 - Kurc K, Burghardt A, Gierlak P, Muszyńska M, Szybicki D, Ornat A, Uliasz M. Application of a 3D Scanner in Robotic Measurement of Aviation Components. Electronics. 2022;11(19): 3216.
https://doi.org/10.3390/electronics11193216 - Glukhov G.E, Chernikov P.E, Karapetyan A.G, Konkov A.Y, Sharypov A.N. Automated management system of technological and production processes of the civil aviation air enterprise known as' the custom module'the operator. In Proceedings of the 34th International Business Information Management Association Conference-Vision 2020: Sustainable Economic Development and Application of Innovation Management from Regional expansion to Global Growth: 7297–7309.
- Szybicki D, Burghardt A, Kurc K, Gierlak P. Device for Contact Measurement of Turbine Blade Geometry in Robotic Grinding Process. Sensors. 2020;20(24): 7053.
https://doi.org/10.3390/s20247053 - Burghardt A, Kurc K, Szybicki D, Muszyńska M, Nawrocki J. Robot-operated quality control station based on the UTT method. Open Engineering. 2017;7(1): 37–42.
https://doi.org/10.1515/eng-2017-0008 - Burghardt A, Szybicki D, Gierlak P, Kurc K, Muszyńska M. Robotic Grinding Process of Turboprop Engine Compressor Blades with Active Selection of Contact Force. Tehnički vjesnik. 2022;29(1): 15–22.
https://doi.org/10.17559/TV-20190710141137 - Sha J, Wang J, Hu H, Ye Y, Xu G. Development of an Accurate and Automated Quality Inspection System for Solder Joints on Aviation Plugs Using Fine-Tuned YOLOv5 Models. Applied Sciences. 2023;13(9): 5290.
https://doi.org/10.3390/app13095290 - Bernabei M, Eugeni M, Gaudenzi P, Costantino F. Assessment of Smart Transformation in the Manufacturing Process of Aerospace Components Through a Data-Driven Approach. Glob J Flex Syst Manag. 2023;24: 67–86.
https://doi.org/10.1007/s40171-022-00328-7 - Vasic M, Billard A. Safety issues in human-robot interactions. In 2013 IEEE International Conference on Robotics and Automation: 197–204.
https://doi.org/10.1109/ICRA.2013.6630576 - Chinniah Y. (2016). Robot safety: overview of risk assessment and reduction. Advances in Robotics & Automation. 2016;5(01): 1–5.
https://doi.org/10.4172/2168-9695.1000139 - Alvarado M.L. A risk assessment of human-robot interface operations to control the potential of injuries/losses at XYZ manufacturing company. 2002.
- Siying Yang, Yifan Zhong, Dawei Feng, Rita Yi Man Li, Xue-Feng Shao, Wei Liu. Robot application and occupational injuries: Are robots necessarily safer?. Safety Science. 2022;147: 105623.
https://doi.org/10.1016/j.ssci.2021.105623 - Dhillon B.S, Anude O.C. Robot safety and reliability: A review, Micro-electronics Reliability. 1993;33(3): 413–429.
https://doi.org/10.1016/0026-2714(93)90030-3 - Falandys K, Kurc K, Burghardt A, Szybicki D. Automation of the Edge Deburring Process and Analysis of the Impact of Selected Parameters on Forces and Moments Induced during the Process. Applied Sciences. 2023;13(17): 9646.
https://doi.org/10.3390/app13179646 - Gusri A.I, Yanuar B, Yasir M.A. (2020). Burr Formation Analysis When Micro Milling Ti-6al-4v Eli Using End Mill Carbide Insert. PalArch's Journal of Archaeology of Egypt/Egyptology. 2020;17(9): 4061–4067.
- Matuszak J, Zaleski K. Warunki technologiczne procesu usuwania zadziorów z przedmiotów wykonanych ze stopów aluminium. Przegląd Mechaniczny. 2016;(12): 29–32.
https://doi.org/10.15199/148.2016.12.5 - Kurniawan R, Kumaran S.T, Prabu V.A, Zhen Y, Park K.M, Kwak Y.I, Ko T.J. Measurement of burr removal rate and analysis of machining parameters in ultrasonic assisted dry EDM (US-EDM) for deburring drilled holes in CFRP composite. Measurement. 2017;110: 98–115.
https://doi.org/10.1016/j.measurement.2017.06.008 - Kim Y.G, Kim K.J, Kim K.H. Efficient Removal of Milling Burrs by Abrasive Flow. International Journal of Precision Engineering and Manufacturing. 2021;22: 441–451.
https://doi.org/10.1007/s12541-020-00455-0 - Makulavičius M, Petkevičius S, Rožėnė J, Dzedzickis A, Bučinskas V. Industrial Robots in Mechanical Machining: Perspectives and Limitations. Robotics. 2023;12(6): 160.
https://doi.org/10.3390/robotics12060160 - Iglesias I, Sebastián M.A, Ares J.E. Overview of the State of Robotic Machining: Current Situation and Future Potential. Procedia Engineering. 2015;132: 911–917.
https://doi.org/10.1016/j.proeng.2015.12.577 - Pandremenos J, Doukas C, Stavropoulos P, Chtabsolouris G. Machining with robots: a critical review. Proceedings of DET2011. 1–9.
- Denkena B, Bergmann B, Lepper T. Design and optimization of a machining robot. Procedia Manufacturing. 2017;14: 89–96.
https://doi.org/10.1016/j.promfg.2017.11.010 - Klimchik A, Ambiehl A, Garnier S, Furet B, Pashkevich A. Efficiency evaluation of robots in machining applications using industrial performance measure. Robotics and Computer-Integrated Manufacturing. 2017;48: 12–29.
https://doi.org/10.1016/j.rcim.2016.12.005 - Pan Z, Zhang H, Zhu Z, Wang J. Chatter analysis of robotic machining process. Journal of Materials Processing Technology. 2006;173(3): 301–309.
https://doi.org/10.1016/j.jmatprotec.2005.11.033 - Schnoes F, Zaeh M.F. Model-based planning of machining operations for industrial robots. Procedia CIRP. 2019;82: 497–502.
https://doi.org/10.1016/j.procir.2019.04.331 - Kim S.H, Nam E, Ha T.I, Hwang S.H, Lee J.H, Park S.H, Min B.K. Robotic machining: A review of recent progress. International Journal of Precision Engineering and Manufacturing. 2019;20: 1629–1642.
https://doi.org/10.1007/s12541-019-00187-w - Burghardt A, Kurc K, Szybicki D, Muszyńska M, Szczęch T. Monitoring the parameters of the robot-operated quality control process. Advances in Science and Technology. Research Journal. 2017;11(1): 232–236.
https://doi.org/10.12913/22998624/68466 - Onstein I.F, Semeniuta O, Bjerkeng M. Deburring using robot manipulators: A review. In 2020 3rd international symposium on small-scale intelligent manufacturing systems (SIMS): 1–7. IEEE.
https://doi.org/10.1109/SIMS49386.2020.9121490 - Posada J.R.D, Kumar S, Kuss A, Schneider U, Drust M, Dietz T, Verl A. Automatic programming and control for robotic deburring. In Proceedings of ISR 2016: 47st International Symposium on Robotics: 1–8. VDE.
- Hu J, Kabir A.M, Hartford S.M, Gupta S.K, Pagilla P.R. Robotic deburring and chamfering of complex geometries in high-mix/low-volume production applications. In 2020 IEEE 16th international conference on automation science and engineering (CASE): 1155–1160. IEEE.
- Bottin M, Cocuzza S, Massaro M. Variable Stiffness Mechanism for the Reduction of Cutting Forces in Robotic Deburring. Applied Sciences. 2021;11(6): 2883.
https://doi.org/10.3390/app11062883 - Wang Q, Wang W, Zheng L, Yun C. Force control-based vibration suppression in robotic grinding of large thin-wall shells. Robotics and Computer-Integrated Manufacturing. 2021;67: 102031.
https://doi.org/10.1016/j.rcim.2020.102031 - Zhu D, Feng X, Xu X, Yang Z, Li W, Yan S, Ding H. Robotic grinding of complex components: a step towards efficient and intelligent machining–challenges, solutions, and applications. Robotics and Computer-Integrated Manufacturing. 2020;65: 101908.
https://doi.org/10.1016/j.rcim.2019.101908 - Matuszak J, Kłonica M, Zagórski I. Effect of brushing conditions on axial forces in ceramic brush surface treatment. In 2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAero-Space); 644–648: IEEE.
https://doi.org/10.1109/MetroAeroSpace.2019.8869605 - Onstein I.F, Semeniuta O, Bjerkeng M. Deburring using robot manipulators: A review. In 2020 3rd international symposium on small-scale intelligent manufacturing systems (SIMS): 1–7. IEEE.
https://doi.org/10.1109/SIMS49386.2020.9121490 - Korzyński M. Metodyka eksperymentu. Planowanie, realizacja i statystyczne operacowanie wyników eksperymentów technologicznych. Wydanie II. Wydawnictwa Naukowo-Techniczne; 2017.
- Chomsamutr K, Jongprasithporn S. Optimization parameters of tool life model using the Taguchi approach and response surface methodology. International Journal of Computer Science Issues (IJCSI). 2012;9(1):120.
- Bhushan R. K. Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites. Journal of cleaner production. 2013;39: 242–254.
https://doi.org/10.1016/j.jclepro.2012.08.008