Have a personal or library account? Click to login
Static Carrying Capacity of a Single-Row Ball Slewing Bearing Taking into Account Drive Transmission Conditions Cover

Static Carrying Capacity of a Single-Row Ball Slewing Bearing Taking into Account Drive Transmission Conditions

Open Access
|Mar 2025

References

  1. Aguirrebeitia J, Abasolo M, Aviles R, Bustos IF. General static load-carrying capacity for the design and selection of four contact point slewing bearings: finite element calculations and theoretical model validation. Finite Elem. Anal. Des. 2012; 55: 23–30. Available from: https://doi.org/10.1016/j.finel.2012.02.002
  2. Śpiewak S. Methodology for calculating the complete static carrying capacity of twin slewing bearing. Mechanism and Machine Theory 2016; 101: 181–194. Available from: https://doi.org/10.1016/j.mechmachtheory.2016.03.017
  3. Slewing Ring Turntable Bearings. Kaydon Corporation. Catalog 390, Muskegon. 2011.
  4. Rothe Erde slewing berings. RotheErde GmbH. Dortmund. 2007.
  5. INA Slewing rings. Catalogue 404, Schaeffler Technologies AG & Co. KG Herzogenaurach (Germany).
  6. Potočnik R, Göncz P, Glodež S. Static capacity of a large double row slewing ball bearing with predefined irregular geometry. Mechanism and Machine Theory. 2013;64:67–79. Available from: https://doi.org/10.1016/j.mechmachtheory.2013.01.010
  7. Śpiewak S. A peculiarity of determining a static carrying capacity for the one-row ball slewing bearing loaded the large radial force. Journal of KONES. 2016; 3: 533 – 540.
  8. Li Y, Jiang D. Dynamic carrying capacity analysis of double-row four-point contact ball slewing bearing, Mathematical Problems in Engineering, 2015; PT.19: 1–7. Available from: 10.1155/2015/850908
  9. Smolnicki T, Derlukiewicz D, Stańco M. Evaluation of load distribution in the superstructure rotation joint of single-bucket caterpillar excavators. Automation in Construction. 2008;17:218–223.
  10. He P, Hong R, Wang H, Lu C. Fatigue life analysis of slewing bearings in wind turbines. International Journal of Fatigue. 2018; 111: 233–242. Available from: https://doi.org/10.1016/j.ijfatigue.2018.02.024
  11. Jaskot A, Śpiewak B, Śpiewak S. Influence of radial forces positively, negatively and perpendiculary directed on the static carrying capacity of the one row ball slewing bearing. Machine Dynamics Research. 2015; 3: 33 – 47.
  12. Glodež S, Potočnik R, Flašker J, Computational model for calculation of static capacity and lifetime of large slewing bearing’s raceway, Mechanism and Machine Theory. 2012;47:16–30. Available from: https://doi.org/10.1016/j.mechmachtheory.2011.08.010
  13. Li Y, Wang R, Mao F. Calculation method for the static carrying curve of double-row different-diameter ball slewing bearings. Science Progress. 2023; 106(2). Available from: 10.1177/00368504231180026
  14. Friederici V, Schumacher J, Clausen B, Influence of local differences in microstructure and hardness on the fatigue behaviour of a slewing bearing steel. Procedia Structural Integrity. 2021;31:8–14. Available from: https://doi.org/10.1016/j.prostr.2021.03.003
  15. He P, Liu R, Hong R, Wang H, Yang G, Lu C. Hardened raceway calculation analysis of a three-row roller slewing bearing. International Journal of Mechanical Sciences. 2018; 137: 133–144. Available from: https://doi.org/10.1016/j.ijmecsci.2018.01.021.
  16. Caesarendra W, Kosasih B, Tieu AK, Moodie CAS. Application of the largest Lyapunov exponent algorithm for feature extraction in low speed slewing bearing condition monitoring. Mechanical Systems and Signal Processing. 2015; January 50–51: 116–138. Available from: https://doi.org/10.1016/j.ymssp.2014.05.021
  17. Caesarendra W, Kosasih B, Tieu AK, Zhu H, Moodie CAS, Zhu Q. Acoustic emission-based condition monitoring methods: Review and application for low speed slew bearing. Mechanical Systems and Signal Processing. 2016; 72–73: 134–159. Available from: https://doi.org/10.1016/j.ymssp.2015.10.020
  18. Žvokelj M, Zupan S, Prebil I. EEMD-based multiscale ICA method for slewing bearing fault detection and diagnosis, Journal of Sound and Vibration. 2016; 26: 394–423. Available from: Available from: https://doi.org/10.1016/j.jsv.2016.01.046
  19. Wang S, Chen J, Wang H, Zhang D. Degradation evaluation of slewing bearing using HMM and improved GRU. Measurement. 2019; 146: 385–395. Available from: https://doi.org/10.1016/j.measurement.2019.06.038
  20. Heras I, Aguirrebeitia J, Abasolo M. Friction torque in four contact point slewing bearings: Effect of manufacturing errors and ring stiffness. Mechanism and Machine Theory. 2017; 112: 145–154. Available from: https://doi.org/10.1016/j.mechmachtheory.2017.02.009
  21. Dindar A, Akkök M, Çalışkan M, Experimental Determination and Analytical Model of Friction Torque of a Double Row Roller Slewing Bearing, Journal of Tribology. 2017; 139(2): 021503, Available from: https://doi.org/10.1115/1.4033364
  22. Babu S, Manisekar K. Experimental Study of Heat Distribution in Polished Bearing Surfaces for Design and Development of Large Diameter Slewing Ring Bearing for FBR. Procedia Engineering. 2014; 86: 350–358. Available from: https://doi.org/10.1016/j.proeng.2014.11.048
  23. Amasorraina JI, Sagartzazu X, Damián J. Load distribution in a four contact-point slewing bearing. Mechanism and Machine Theory. 2003; 38: 479–496. Available from: https://doi.org/10.1016/S0094-114X(03)00003-X
  24. Göncz P, Potočnik R, Glodež S. Load capacity of a three-row roller slewing bearing raceway. Procedia Engineering. 2011; 10: 1196–1201. Available from: https://doi.org/10.1016/j.proeng.2011.04.199
  25. Aguirrebeitia J, Plaza J, Abasolo M, Vallejo J. Effect of the preload in the general static load-carrying capacity of four-contact-point slewing bearings for wind turbine generators: theoretical model and finite element calculations. Wind Energ. 2014; 17: 1605–1621. Available from: https://doi.org/10.1002/we.1656
  26. Kania L, Śpiewak S. English title: Determining the reactions of balls slewing bearing mounted in working struktures of the single-bucket excavator. Polish title: Wyznaczanie reakcji kulek łożyska wieńcowego osadzonego w strukturach roboczych koparki jednonaczyniowej. Zeszyty Naukowe Transport. Politechnika Śląska. 2014; 83: 127–136.
  27. ADINA. Theory and Modeling Guide. Vol. 1: ADINA Solids & Structures. ADINA R&D Inc. Watertown. 2012.
  28. Bathe KJ, Finite Element Procedures. Prentice-Hall. Inc. Simon & Schuster/A Viacom Company Upper Saddle River. New Jersey. 1996.
  29. Hwang SC, Lee JH, Lee DH, Han SH, Lee KH. Contact stress analysis for a pair of mating gears. Mathematical and Computer Modelling. 2013; 57:40–49. Available from: https://doi.org/10.1016/j.mcm.2011.06.055
  30. Li S. Effect of addendum on contact strength, bending strengthand basic performance parameters of a pair of spur gears. Mechanism and Machine Theory. 2008; 43: 1557–1584.
  31. DIN/ISO – 898.
  32. Smolnicki T, Rusiński E. Superelement-based modeling of load distribution in large-size slewing bearings. Journal of Mechanical Design. 2007; 129: 459–463.
  33. Kania L., Śpiewak S. Współczynnik krotności łożysk wieńcowych podwójnych. Acta Mechanica et Automatica. 2009;3(1): 65–67.
  34. Brändlein J, Eschmann P, Hasbargen L, Weigand K, Die Wälzlagerpraxis. Vereinigte Fachverlag GmbH. 1998. Mainz.
  35. Smolnicki T,. Modelling, computing, and analyzing large-size rotary joints; In: Sokolski, M. (eds) Mining Machines and Earth-Moving Equipment. Springer. 2020. Cham. Available from: https://doi.org/10.1007/978-3-030-25478-0_3
  36. Sokolski P, Smolnicki T. A method for monitoring the technical condition of large-scale bearing nodes in the bodies of machines operating for extended periods of time. Energies. 2021;14:6637. Available from: https://doi.org/10.3390/en14206637
  37. He P, Qian Q, Wang Y, Liu H. Guo E, Wang H. Influence of finite element mesh size on the carrying capacity analysis of single-row ball slewing bearing. Advances in Mechanical Engineering. 2021; 13: 1–12.
  38. Kania L, Krynke M, Mazanek E. A catalogue capacity of slewing bearings. Mechanism and Machine Theory. 2012; 58: 29–45. Available from: https://doi.org/10.1016/j.mechmachtheory.2012.07.012
DOI: https://doi.org/10.2478/ama-2025-0003 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 15 - 25
Submitted on: Jan 18, 2024
Accepted on: Apr 1, 2024
Published on: Mar 31, 2025
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Szczepan Śpiewak, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.