Have a personal or library account? Click to login
Automatic Device with Self-Braking for Fixation Objects in Executive Links of Technological Equipment Cover

Automatic Device with Self-Braking for Fixation Objects in Executive Links of Technological Equipment

By: Borys Prydalnyi  
Open Access
|Mar 2025

References

  1. Noske H. Monitoring of gripping force in lathe chucks. Fault Detection, Supervision and Safety for Technical Processes 1991. IFAC Symposia Series. Baden-Baden, Germany 1992;6:581–586. https://doi.org/10.1016/B978-0-08-041275-7.50092-2
  2. Prydalnyi B, Sulym H. Identification of analytical dependencies of the operational characteristics of the workpiece clamping mechanisms with the rotary movement of the input link. Acta Mechanica et Auto-matica. 2021;15(1):47–52. https://doi.org/10.2478/ama-2021-0007
  3. Prydalnyi B. Mathematical Model of a Backlash Elimination in the New Clamping Mechanism. Lecture Notes in Mechanical Engineering. 2022;1:109–118. https://doi.org/10.1007/978-3-030-91327-4_11
  4. Thorenz B, Westermann H, Kafara M, Nuetzel M, Steinhilper R. Evaluation of the influence of different clamping chuck types on energy consumption, tool wear and surface qualities in milling operations. Procedia Manufacturing. 2018;21:575–582. https://doi.org/10.1016/j.promfg.2018.02.158
  5. Yadav MH, Mohite SS. Controlling deformations of thin-walled Al6061-T6 components by adaptive clamping. Procedia Manufacturing. 2018;20:509–516. https://doi.org/10.1016/j.promfg.2018.02.076
  6. Shaoke W, Jun H, Fei D. Modelling and characteristic investigation of spindle-holder assembly under clamping and centrifugal forces. Journal of Mechanical Science and Technology. 2019;33(5):2397–2405. https://doi.org/:10.1007/s12206-019-0438-3
  7. Alquraan T, Kuznetsov Yu, Tsvyd T. High-speed clamping mechanism of the CNC lathe with compensation of centrifugal forces. Procedia engineering. 2016;150:689–695. https://doi.org/:10.1016/j.proeng.2016.07.081
  8. Estrems M, Carrero-Blanco J, Cumbicus W, Francisco O, Sánchez H. Contact mechanics applied to the machining of thin rings. Procedia Manufacturing. 2017;13:655–662. https://doi.org/10.1016/j.promfg.2017.09.138
  9. Gang Wang, Yansheng Cao, Yingfeng Zhang. Digital twin-driven clamping force control for thin-walled parts. Advanced Engineering Informatics. 2022;51: 1474–0346. https://doi.org/10.1016/j.aei.2021.101468
  10. Pavankumar R, Gurudath B, Virendra A, Subray R. Failure of hydraulic lathe chuck assembly. Engineering Failure Analysis. 2022;133: 106001. https://doi.org/10.1016/j.engfailanal.2021.106001
  11. Estrems M, Arizmendi M, Zabaleta A.J, Gil A. Numerical method to calculate the deformation of thin rings during turning operation and its influence on the roundness tolerance. Procedia Engineering. 2015;132:872–879. https://doi.org/10.1016/j.proeng.2015.12.572
  12. Shamei M, Tajalli SA. Stability and Bifurcation Analysis in Turning of Flexible Parts with Spindle Speed Variation Using FEM Simulation Data. International journal of structural stability and dynamics. 2023; 2450004. https://doi.org/10.1142/s0219455424500044
  13. Dong X, Shen X, & Fu Z. Stability analysis in turning with variable spindle speed based on the reconstructed semi-discretization method. International Journal of Advanced Manufacturing Technology. 2021;117:3393–3403. https://doi.org/10.1007/s00170-021-07869-8
  14. Joch R, Šajgalík M, Drbúl M, Holubják J, Czán A, Bechný V, Matúš M. The Application of Additive Composites Technologies for Clamping and Manipulation Devices in the Production Process. Materials. 2023;16(10):3624. https://doi.org/10.3390/ma16103624
  15. Beri B, Meszaros G, Stepan G. Machining of slender workpieces subjected to time-periodic axial force: stability and chatter suppression. Journal of Sound and Vibration. 2021;504:116114. https://doi.org/10.1016/j.jsv.2021.116114
  16. 16. Soriano-Heras E, Rubio H, Bustos A, Castejon C. Mathematical Analysis of the Process Forces Effect on Collet Chuck Holders. Mathematics. 2021;9(5):492. https://doi.org/10.3390/math9050492
    Soriano-HerasE RubioH BustosA CastejonC Mathematical Analysis of the Process Forces Effect on Collet Chuck Holders Mathematics 2021 9 5 492https://doi.org/10.3390/math9050492
  17. Liang Z, Zhao C, Zhou H, et al. Investigation on fixture design and precision stability of new-type double collect chuck for machining of long ladder shaft gear. J Mech Sci Technol. 2019;33:323–332. https://doi.org/10.1007/s12206-018-1234-1
  18. Song QH, Liu ZQ, Wan Y, Ai X. Instability of internal damping due to collet chuck holder for rotating spindle-holder-tool system. Mechanism and Machine Theory. 2016;101:95–115. https://doi.org/10.1016/j.mechmachtheory.2016.03.007
  19. Pasternak V, Samchuk L, Huliieva N, Andrushchak I, Ruban A. Investigation of the properties of powder materials using computer modelling. Materials Science Forum. 2021;1038:33–39. https://doi.org/10.4028/www.scientific.net/MSF.1038.33
  20. Li C, Zou Z, Duan W, Liu J, Gu F, Ball AD. Characterizing the Vibration Responses of Flexible Workpieces during the Turning Process for Quality Control. Applied Sciences-Basel. 2023;13(23):12611. https://doi.org/10.3390/app132312611
DOI: https://doi.org/10.2478/ama-2025-0002 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 7 - 14
Submitted on: Jan 23, 2024
Accepted on: May 21, 2024
Published on: Mar 31, 2025
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Borys Prydalnyi, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.