Have a personal or library account? Click to login
Computational Analysis of MHD Nanofluid Flow Across a Heated Square Cylinder with Heat Transfer and Entropy Generation Cover

Computational Analysis of MHD Nanofluid Flow Across a Heated Square Cylinder with Heat Transfer and Entropy Generation

Open Access
|Aug 2024

References

  1. Seyyedi SM, Hashemi-Tilehnoee M, del Barrio EP, Dogonchi AS, Sharifpur M. Analysis of magneto-natural-convection flow in a semi-annulus enclosure filled with a micropolar-nanofluid; a computational framework using CVFEM and FVM. Journal of Magnetism and Magnetic Materials. 2023; 568:170407. https://doi.org/10.1016/j.jmmm.2023.170407
  2. Abbas N, Nadeem S, Issakhov A. Transportation of modified nanofluid flow with time dependent viscosity over a Riga plate: exponentially stretching. Ain Shams Engineering Journal. 2021;12(4):3967-73. https://doi.org/10.1016/j.asej.2021.01.034
  3. Lee S, Choi SS, Li SA, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. 1999;121:280–289. https://doi.org/10.1115/1.2825978
  4. Mostafizur RM, Saidur R, Aziz AA, Bhuiyan MH. Thermophysical properties of methanol based Al2O3 nanofluids. International Journal of Heat and Mass Transfer. 2015;85:414-9. https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.075
  5. Sharma BK, Kumawat C, Bhatti MM. Optimizing energy generation in power-law nanofluid flow through curved arteries with gold nanoparticles. Numerical Heat Transfer, Part A: Applications. 2023;1-33. https://doi.org/10.1080/10407782.2023.2232123
  6. Wen D, Ding Y. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International journal of heat and mass transfer. 2004;47(24):5181-8. https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012
  7. Shahi M, Mahmoudi AH, Talebi F. Numerical study of mixed convective cooling in a square cavity ventilated and partially heated from the below utilizing nanofluid. International Communications in Heat and Mass Transfer. 2010;37(2):201-13. https://doi.org/10.1016/j.icheatmasstransfer.2009.10.002
  8. Bovand M, Rashidi S, Esfahani JA. Enhancement of heat transfer by nanofluids and orientations of the equilateral triangular obstacle. Energy conversion and management. 2015;97:212-23. https://doi.org/10.1016/j.enconman.2015.03.042
  9. Hayat T, Khan MI, Waqas M, Alsaedi A, Farooq M. Numerical simulation for melting heat transfer and radiation effects in stagnation point flow of carbon–water nanofluid. Computer methods in applied mechanics and engineering. 2017;315:1011-24. https://doi.org/10.1016/j.cma.2016.11.033
  10. Hayat T, Waqas M, Alsaedi A, Bashir G, Alzahrani F. Magnetohydro-dynamic (MHD) stretched flow of tangent hyperbolic nanoliquid with variable thickness. Journal of molecular liquids. 2017 Mar 1;229:178-84. Available from : https://doi.org/10.1016/j.molliq.2016.12.058
  11. Sheikholeslami M, Ellahi R. Electrohydrodynamic nanofluid hydro-thermal treatment in an enclosure with sinusoidal upper wall. Applied Sciences. 2015;5(3):294-306. https://doi.org/10.3390/app5030294
  12. Sheikholelami M, Chamkha AJ. Electrohydrodynamic free convection heat transfer of a nanofluid in a semi-annulus enclosure with a sinusoidal wall. Numerical Heat Transfer, Part A: Applications. 2016;69(7):781-93. https://doi.org/10.1080/10407782.2015.1090819
  13. Kandelousi MS, Ellahi R. Simulation of ferrofluid flow for magnetic drug targeting using the lattice Boltzmann method. Zeitschrift für Naturforschung A. 2015;70(2):115-24. https://doi.org/10.1515/zna-2014-0258
  14. Sarfraz M, Khan M, Al-Zubaidi A, Saleem S. Tribology-informed analysis of convective energy transfer in ternary hybrid nanofluids on inclined porous surfaces. Tribology International. 2023;188:108860. https://doi.org/10.1016/j.triboint.2023.108860
  15. Sarfraz M, Khan M, Al-Zubaidi A, Saleem S. Enhancing energy transport in Homann stagnation-point flow over a spiraling disk with ternary hybrid nanofluids. Case Studies in Thermal Engineering. 2023;49:103134. https://doi.org/10.1016/j.csite.2023.103134
  16. Chaudhary RC, Sharma BK. Combined heat and mass transfer by laminar mixed convection flow from a vertical surface with induced magnetic field. Journal of Applied Physics. 2006;99(3):034901. https://doi.org/10.1063/1.2161817
  17. Sharma BK, Mishra A, Gupta S. Heat and mass transfer in magneto-biofluid flow through a non-Darcian porous medium with Joule effect. Journal of Engineering Physics and Thermophysics. 2013;86:766-74. 17. https://link.springer.com/article/10.1007/s10891-013-0893-0
  18. Raj Kumawat S, Vyas H, Mohan R, Sasidharan R, Yadav B, Gupta N. 90 versus 60 min of early skin-to-skin contact on exclusive breast-feeding rate in healthy infants’≥ 35 weeks: A randomised controlled trial. Acta Paediatrica. 2024;113(2):199-205. https://doi.org/10.1111/apa.17021
  19. Mishra A, Sharma BK. MHD mixed convection flow in a rotating channel in the presence of an inclined magnetic field with the Hall effect. Journal of Engineering Physics and Thermophysics. 2017; 90:1488-99. https://doi.org/10.1007/s10891-017-1710-y
  20. Sharma S, Maiti DK, Alam MM, Sharma BK. Nanofluid flow and heat transfer from heated square cylinder in the presence of upstream rectangular cylinder under Couette-Poiseuille flow. Wind Struct. 2019;29(1):65-75. https://doi.org/10.12989/was.2019.29.1.065
  21. Turki S, Abbassi H, Nasrallah SB. Effect of the blockage ratio on the flow in a channel with a built-in square cylinder. Computational Mechanics. 2003;33:22-9. https://doi.org/10.1007/s00466-003-0496-2
  22. Bouaziz M, Kessentini S, Turki S. Numerical prediction of flow and heat transfer of power-law fluids in a plane channel with a built-in heated square cylinder. International Journal of Heat and Mass Transfer. 2010;53(23-24):5420-9. https://doi.org/10.1016/j.ijheatmasstransfer.2010.07.014
  23. Hayat T, Anwar MS, Farooq M, Alsaedi A. Mixed convection flow of viscoelastic fluid by a stretching cylinder with heat transfer. Plos one. 2015;10(3):e0118815. https://doi.org/10.1371/journal.pone.0118815
  24. Sharma BK, Sharma P, Mishra NK, Fernandez-Gamiz U. Darcy-Forchheimer hybrid nanofluid flow over the rotating Riga disk in the presence of chemical reaction: artificial neural network approach. Alexandria Engineering Journal. 2023;76:101-30. https://doi.org/10.1016/j.aej.2023.06.014
  25. Kumar A, Sharma BK, Gandhi R, Mishra NK, Bhatti MM. Response surface optimization for the electromagnetohydrodynamic Cupolyvinyl alcohol/water Jeffrey nanofluid flow with an exponential heat source. Journal of Magnetism and Magnetic Materials. 2023;576:170751. https://doi.org/10.1016/j.jmmm.2023.170751
  26. Sharma BK, Sharma P, Mishra NK, Noeiaghdam S, Fernandez-Gamiz U. Bayesian regularization networks for micropolar ternary hybrid nanofluid flow of blood with homogeneous and heterogeneous reactions: Entropy generation optimization. Alexandria Engineering Journal. 2023;77:127-48. https://doi.org/10.1016/j.aej.2023.06.080
  27. Sharma BK, Khanduri U, Mishra NK, Chamkha AJ. Analysis of Arrhenius activation energy on magnetohydrodynamic gyrotactic microorganism flow through porous medium over an inclined stretching sheet with thermophoresis and Brownian motion. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 2023;237(5):1900-14. https://doi.org/10.1177/09544089221128768
  28. Dogonchi AS, Mishra SR, Chamkha AJ, Ghodrat M, Elmasry Y, Alhumade H. Thermal and entropy analyses on buoyancy-driven flow of nanofluid inside a porous enclosure with two square cylinders: Finite element method. Case Studies in Thermal Engineering. 2021;27:101298. https://doi.org/10.1016/j.csite.2021.101298
  29. Afshar SR, Mishra SR, Dogonchi AS, Karimi N, Chamkha AJ, Abulkhair H. Dissection of entropy production for the free convection of NEPCMs-filled porous wavy enclosure subject to volumetric heat source/sink. Journal of the Taiwan Institute of Chemical Engineers. 2021;128:98-113. https://doi.org/10.1016/j.jtice.2021.09.006
  30. Shao W, Nayak MK, El-Sapa S, Chamkha AJ, Shah NA, Galal AM. Entropy optimization of non-Newtonian nanofluid natural convection in an inclined U-shaped domain with a hot tree-like baffle inside and considering exothermic reaction. Journal of the Taiwan Institute of Chemical Engineers. 2023;148:104990. https://doi.org/10.1016/j.jtice.2023.104990
  31. Dogonchi AS, Bondareva NS, Sheremet MA, El-Sapa S, Chamkha AJ, Shah NA. Entropy generation and heat transfer performance analysis of a non-Newtonian NEPCM in an inclined chamber with complicated heater inside. Journal of Energy Storage. 2023;72:108745. https://doi.org/10.1016/j.est.2023.108745
  32. Nayak MK, Dogonchi AS, Rahbari A. Free convection of Al2O3-water nanofluid inside a hexagonal-shaped enclosure with cold diamond-shaped obstacles and periodic magnetic field. Case Studies in Thermal Engineering. 2023;50:103429. https://doi.org/10.1016/j.csite.2023.103429
  33. Sharma BK, Kumawat C, Makinde OD. Hemodynamical analysis of MHD two phase blood flow through a curved permeable artery having variable viscosity with heat and mass transfer. Biomechanics and Modeling in Mechanobiology. 2022;21(3):797-825. https://doi.org/10.1007/s10237-022-01561-w
  34. Sharma BK, Kumawat C, Khanduri U, Mekheimer KS. Numerical investigation of the entropy generation analysis for radiative mhd power-law fluid flow of blood through a curved artery with hall effect. Waves in Random and Complex Media. 2023:1-38. https://doi.org/10.1080/17455030.2023.2226228
  35. Kumawat C, Sharma BK, Al-Mdallal QM, Rahimi-Gorji M. Entropy generation for MHD two phase blood flow through a curved permeable artery having variable viscosity with heat and mass transfer. International Communications in Heat and Mass Transfer. 2022;133: 105954. https://doi.org/10.1016/j.icheatmasstransfer.2022.105954
  36. Koo J, Kleinstreuer C. Laminar nanofluid flow in microheat-sinks. International journal of heat and mass transfer. 2005;48(13):2652-61. https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.029
  37. 37 Santra AK, Sen S, Chakraborty N. Study of heat transfer due to laminar flow of copper–water nanofluid through two isothermally heated parallel plates. International journal of thermal sciences. 2009;48(2):391-400. https://doi.org/10.1016/j.ijthermalsci.2008.10.004
  38. Yasmeen T, Hayat T, Khan MI, Imtiaz M, Alsaedi A. Ferrofluid flow by a stretched surface in the presence of magnetic dipole and homogeneous-heterogeneous reactions. Journal of Molecular liquids. 2016;223:1000-5. https://doi.org/10.1016/j.molliq.2016.09.028
  39. Nawaz M, Nazir U, Saleem S, Alharbi SO. An enhancement of thermal performance of ethylene glycol by nano and hybrid nanoparticles. Physica A: Statistical Mechanics and its Applications. 2020;551:124527. https://doi.org/10.1016/j.physa.2020.124527
  40. Sohankar A, Norberg C, Davidson L. Low-Reynolds-number flow around a square cylinder at incidence: study of blockage, onset of vortex shedding and outlet boundary condition. International journal for numerical methods in fluids. 1998;26(1):39-56. https://doi.org/10.1002/(SICI)1097-0363
  41. Abbassi H, Turki S, Nasrallah SB. Channel flow past bluff-body: outlet boundary condition, vortex shedding and effects of buoyancy. Computational Mechanics.2002;28(1):10-6. https://doi.org/10.1007/s004660100261
  42. Masoumi N, Sohrabi N, Behzadmehr A. A new model for calculating the effective viscosity of nanofluids. Journal of Physics D: Applied Physics. 2009;42(5):055501. DOI 10.1088/0022-3727/42/5/055501
  43. Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. International Journal of heat and Mass transfer. 2000;43(19):3701-7. https://doi.org/10.1016/S0017-9310(99)00369-5
  44. Vajjha RS, Das DK. Experimental determination of thermal conductivity of three nanofluids and development of new correlations. International journal of heat and mass transfer. 2009;52(21-22):4675-82. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.027
  45. Dogonchi AS, Waqas M, Afshar SR, Seyyedi SM, Hashemi-Tilehnoee M, Chamkha AJ, Ganji DD. Investigation of magneto-hydrodynamic fluid squeezed between two parallel disks by considering Joule heating, thermal radiation, and adding different nanoparticles. International Journal of Numerical Methods for Heat & Fluid Flow. 2020;30(2):659-80. https://doi.org/10.1108/HFF-05-2019-0390
  46. Abbas N, Nadeem S, Issakhov A. Transportation of modified nanofluid flow with time dependent viscosity over a Riga plate: exponentially stretching. Ain Shams Engineering Journal. 2021;12(4):3967-73. https://doi.org/10.1016/j.asej.2021.01.034
  47. Sivaraj R, Animasaun IL, Olabiyi AS, Saleem S, Sandeep N. Gyro-tactic microorganisms and thermoelectric effects on the dynamics of 29 nm CuO-water nanofluid over an upper horizontal surface of paraboloid of revolution. Multidiscipline Modeling in Materials and Structures. 2018 Oct 8;14(4):695-721. https://doi.org/10.1108/MMMS-10-2017-0116
  48. Owen MS. ASHRAE Handbook: Fundamentals, American Society of Heating. Refrigeration and Air-Conditioning Engineers. 2009.
  49. Scarpa F, Smith FC. Passive and MR fluid-coated auxetic PU foam– mechanical, acoustic, and electromagnetic properties. Journal of intelligent material systems and structures. 2004;15(12):973-9. https://doi.org/10.1177/1045389X04046610
  50. ANSYS C. Reference Guide. Release 12.1. ANSYS. Inc. 2009.
  51. Uddin MJ, Rasel SK, Rahman MM, Vajravelu K. Natural convective heat transfer in a nanofluid-filled square vessel having a wavy upper surface in the presence of a magnetic field. Thermal Science and Engineering Progress. 2020;19:100660. https://doi.org/10.1016/j.tsep.2020.100660
  52. Abdi H, Motlagh SY, Soltanipour H. Study of magnetic nanofluid flow in a square cavity under the magnetic field of a wire carrying the electric current in turbulence regime. Results in Physics. 2020;18:103224. https://doi.org/10.1016/j.rinp.2020.103224
  53. Tzirtzilakis EE, Xenos MA. Biomagnetic fluid flow in a driven cavity. Meccanica. 2013;48:187-200. https://doi.org/10.1007/s11012-012-9593-7
  54. Lee S, Choi SS, Li SA, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles.1999;121(2): 280-289. https://doi.org/10.1115/1.2825978
  55. Philip J, Shima PD, Raj B. Evidence for enhanced thermal conduction through percolating structures in nanofluids. Nanotechnology. 2008;19(30):305706. DOI 10.1088/0957-4484/19/30/305706
  56. Shima PD, Philip J, Raj B. Influence of aggregation on thermal conductivity in stable and unstable nanofluids. Applied Physics Letters. 2010;97(15). https://doi.org/10.1063/1.3497280
  57. Xuan Y, Li Q. Heat transfer enhancement of nanofluids. International Journal of heat and fluid flow. 2000;21(1):58-64. https://doi.org/10.1016/S0142-727X(99)00067-3
  58. Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transfer. 2003;125(4):567-74. https://doi.org/10.1115/1.1571080
  59. Liu MS, Lin MC, Huang IT, Wang CC. Enhancement of thermal conductivity with CuO for nanofluids. Chemical Engineering & Technology: Industrial Chemistry-Plant Equipment-Process Engineering- Biotechnology. 2006;29(1):72-7. https://doi.org/10.1002/ceat.200500184
  60. Martínez-Cuenca R, Mondragón R, Hernández L, Segarra C, Jarque JC, Hibiki T, Juliá JE. Forced-convective heat-transfer coefficient and pressure drop of water-based nanofluids in a horizontal pipe. Applied Thermal Engineering. 2016;98:841-9. https://doi.org/10.1016/j.applthermaleng.2015.11.050
  61. Buschmann MH. Nanofluid heat transfer in laminar pipe flow with twisted tape. Heat Transfer Engineering. 2017;38(2):162-76. https://doi.org/10.1080/01457632.2016.1177381
DOI: https://doi.org/10.2478/ama-2024-0057 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 536 - 547
Submitted on: Sep 22, 2023
Accepted on: Dec 28, 2023
Published on: Aug 1, 2024
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Madhu Sharma, Bhupendra K. Sharma, Chandan Kumawat, Arun K. Jalan, Neyara Radwan, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.