Have a personal or library account? Click to login
Computational Analysis of MHD Nanofluid Flow Across a Heated Square Cylinder with Heat Transfer and Entropy Generation Cover

Computational Analysis of MHD Nanofluid Flow Across a Heated Square Cylinder with Heat Transfer and Entropy Generation

Open Access
|Aug 2024

Abstract

The mixed convection heat transfer of nanofluid flow in a heated square cylinder under the influence of a magnetic field is considered in this paper. ANSYS FLUENT computational fluid dynamics (CFD) software with a finite volume approach is used to solve unsteady two-dimensional Navier-Stokes and energy equations. The numerical solutions for velocity, thermal conductivity, temperature, Nusselt number and the effect of the parameters have been obtained; the intensity of the magnetic field, Richardson number, nanoparticle volume fraction, magnetic field parameter and nanoparticle diameter have also been investigated. The results indicate that as the dimensions of nanoparticles decrease, there is an observed augmentation in heat transfer rates from the square cylinder for a fixed volume concentration. This increment in heat transfer rate becomes approximately 2.5%–5% when nanoparticle size decreases from 100 nm to 30 nm for various particle volume fractions. Moreover, the magnitude of the Nusselt number enhances with the increase in magnetic field intensity and has the opposite impact on the Richardson number. The findings of the present study bear substantial implications for diverse applications, particularly in the realm of thermal management systems, where optimising heat transfer is crucial for enhancing the efficiency of electronic devices, cooling systems and other technological advancements.

DOI: https://doi.org/10.2478/ama-2024-0057 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 536 - 547
Submitted on: Sep 22, 2023
Accepted on: Dec 28, 2023
Published on: Aug 1, 2024
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Madhu Sharma, Bhupendra K. Sharma, Chandan Kumawat, Arun K. Jalan, Neyara Radwan, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.