Have a personal or library account? Click to login
Experimental Investigation Into the Tensile Strength Post-Repair on Damaged Aluminium 2024 -T3 Plates Using Hybrid Bonding/Riveting Cover

Experimental Investigation Into the Tensile Strength Post-Repair on Damaged Aluminium 2024 -T3 Plates Using Hybrid Bonding/Riveting

Open Access
|Aug 2024

References

  1. Phyo AM, Hirohito K, Mikihito H. Fatigue-performance improvement of patch-plate welding via PWHT with induction heating. Journal of Constructional Steel Research. 2019;160(3):280–288. https://doi:10.1016/j.jcsr.2019.05.047
  2. D’Aniello M, Portioli F, Fiorino L, Landolfo R. Experimental investigation on shear behaviour of riveted connections in steel structures. Eng. Struct. 2011; 33(2):516–531. https://doi:10.1016/j.engstruct.2010.11.010
  3. Ishikawa T, Ikeda T. Patch Plate Repair Method for Steel Structures Combining Adhesives and Stud Bolts. International Journal of Steel Structures. 2018;18:1410–1419. https://doi.org/10.1007/s13296-018-0149-0
  4. Chen ZY, Gu XL, Zhao XL, Ghafoori E. Fatigue Tests on Fe-SMA Strengthened Steel Plates Considering Thermal Effects. Publication: Journal of Structural Engineering. 2022;149(3). https://doi.org/10.1061/JSENDH.STENG-11694
  5. Ghafoori E, Dahaghin H, Diao Ch, Pichler N, Li L, Ding J, Ganguly S, Williams S. Metal 3D-Printing for Repair of Steel Structures. Proceedings in civil engineering. 2022;796-801. https://doi.org/10.1002/cepa.2285.
  6. Tolga D, Costas S. Recent developments in advanced aircraft aluminium alloys. Materials & Design. 2014;56(1):862–871. https://doi:10.1016/j.matdes.2013.12.002.
  7. Nayak NV. Composite materials in aerospace design. Mater. Des. 2014; 4(9): 1–10.
  8. Baker A. Bonded composite repair of fatigue-cracked primary aircraft structure. Compos. Struct. 1999;47(1):431-443. https://doi:10.1016/S0263-8223(00)00011-8
  9. Baker A, Rose A, L. R. F and Jones R. Advances in the Bonded Composite Repair of Metallic Aircraft Structur. 1ère ed. Netherlands. Elsevier Science. 2002. ISBN: 0-08-042699-9.
  10. Hosseini-Toudeshky H, Sadeghi G, Daghyani HR. Experimental fatigue crack growth and crack-front shape analysis of asymmetric repaired aluminium panels with glass/epoxy composite patches. 2005; 71(3-4): 401–406. http://doi:10.1016/j.compstruct.2005.09.032.
  11. Khalili SMR, Ghadjar R, Sadeghinia M, Mittal RK. An experimental study on the Charpy impact response of cracked aluminum plates repaired with GFRP or CFRP composite patches. Composite Structures.2008; 489(2): 270-274. http://doi:10.1016/j.compstruct.2008.07.032
  12. Maleki HN, Chakherlou TN. Investigation of the Effect of Bonded Composite Patch on the Mixed-Mode Fracture Strength and Stress Intensity Factors for an Edge Crack in Aluminum Alloy 2024-T3 Plates. Journal of Reinforced Plastics and Composites.2017; 36(15): 1074-1091. http://doi:10.1177/0731684417702001
  13. Basaid D, Benmounah A, Aribi Ch, May A. Experimental study of repair of aircraft structures by adhesive patches based on epoxy and fiberglass. Journal of Materials and Engineering Structures. 2019; 6(3):409–426.
  14. Gu J-U, Yoon H-S, Choi N-S. Caractérisation de l’émission acoustique d’une plaque d’aluminium crantée réparée avec un patch en fibre composite. Composites Part A: Applied Science and Manufacturing. 2012;43(12):2211–2220. http://doi:10.1016/j.compositesa.2012.07.018
  15. Benkheira A, Belhouari M, Benbarek S. Comparison of Double- and Single-Bonded Repairs to Symmetrical Composite Structures. Journal of Failure Analysis and Prevention.2018. http://doi:10.1007/s11668-018-0557-7
  16. Kaddouri N, Madani K, Rezgani L, Mokhtari M, Feaugas X. Analysis of the effect of modifying the thickness of a damaged and repaired plate by composite patch on the J-Integral; effect of bonding defects. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2020;42(8). http://doi:10.1007/s40430-020-02515-y
  17. Madani K, Touzain S, Feaugas X, Cohendouz S, Ratwani M. Experimental and numerical study of repair techniques for panels with geometrical discontinuities. Computational Materials Science. 2010; 48(1):83–93. http://doi:10.1016/j.commatsci.2009.12.005
  18. Aldeen A, Mahdi D, Zhongwei C, Disher I, Mohamad B. Effect of isothermal and isochronal aging on the microstructure and precipitate evolution in beta-quenched n36 Zirconium alloy. Facta Universitatis-Series Mechanical Engineering.2023. https://doi:10.22190/FUME230405019A
  19. Rivallant S, Bouvet C, Hongkarnjanakul N . Failure analysis of CFRP laminates subjected to compression after impact simulation using discrete interface elements.Compos. Part A: Appl. Sci. Manuf. 2013.55:83-93. https://doi.org/10.1016/j.compositesa.2013.08.003
  20. Rashnooie R, Zeinoddini M, Ahmadpour F, Beheshti Aval SB, Chen T. A coupled XFEM fatigue modelling of crack growth, delamination and bridging in FRP strengthened metallic plates. Engineering Fracture Mechanics. 2023.279(17):200-230. https://doi.org/10.1016/j.engfracmech.2022.109017
  21. Ait Kaci, K Madani, M Mokhtari, X Feaugas, S Touzain. Impact of composite patch on the J-Integral in adhesive layer for repaired Aluminum plate. Advances in Aircraft and Spacecraft Science. 2017; 4(6): 679-699. https://doi.org/10.12989/aas.2017.4.6.679.
  22. Bernhard Horn, Johannes Neumayer and Klaus Drechsler. Influence of patch length and thickness on strength and stiffness of patched laminates. Journal of Composite Materials. 2018;52(16):2199–2212. https://doi.org/10.1177/0021998317740413
  23. K Madani, S Touzain, X Feaugas, M Benguediab, M Ratwani. Stress distribution in a 2024-T3 aluminum plate with a circular notch, repaired by a graphite/epoxy composite patch. International Journal of Adhesion and Adhesives. 2009; 29: 225-233. https://doi:org/10.1016/j.ijadhadh.2008.05.004
  24. Rezgani L, Madani K, Feaugas X, Touzain S, Cohendoz S, Valette J. Influence of water ingress onto the crack propagation rate in a AA2024-T3 plate repaired by a carbon/epoxy patch. Aerospace Science and Technology.2016;55:359–365. https://doi:10.1016/j.ast.2016.06.010
  25. Wahrhaftig AM, Plevris V, Mohamad B A, Pereira D L .Minimum design bending moment for systems of equivalent stiffness. Structures.2022;57:105224. https://doi.org/10.1016/j.istruc.2023.105224
  26. Al-Abboodi H, Fan H, Al-Bahrani M, Abdelhussien A, Mohamad B. Mechanical characteristics of nano-crystalline material in metallic glass formers. Facta Universitatis-Series Mechanical Engineering. 2023. https://doi:10.22190/FUME230128016A
  27. Davis M, Bond D. Principles and practices of adhesive bonded structural joints and repairs. International Journal of Adhesion and Adhesives.1999;19:91–105. https://doi.org/10.1016/S0143-7496(98)00026-8
  28. Xi J, Yu Z. Toughening mechanism of rubber reinforced epoxy composites by thermal and microwave curing. J. Appl. Polym. Sci. 2017;135(5): 45767–45775. https://doi.org/10.1002/app.45767
  29. 29 Maleki A, Saeedifar M, Najafabadi MA, Zarouchas D. The Fatigue Failure Study of Repaired Aluminum Plates by Composite Patches using Acoustic Emission. Engineering Fracture Mechanics.2017; 210(1):300-311. https://doi.org/10.1016/j.engfracmech.2017.12.034
  30. Seidl AL. Repair Aspects of Composite and Adhesively Bonded Aircraft Structures. Handbook of Composites. Chapter 39. Springer. 1998;857-882.
  31. Zitoune R, Collombet F. Numerical Prediction of the Thrust Force Responsible of Delamination During the Drilling of the Long-fibre Composite Structures. Composites Part A: Applied Science and Manufacturing.2007;38(3):858–866. https://doi.org/10.1016/j.compositesa.2006.07.009
DOI: https://doi.org/10.2478/ama-2024-0055 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 514 - 525
Submitted on: Nov 27, 2023
Accepted on: Jan 29, 2024
Published on: Aug 1, 2024
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Abdelkrim Merah, Amin Houari, Kouider Madani, Mohamed Belhouari, Salah Amroune, Ahmed Chellil, Cherif Zineelabidine Yahia, Raul D.S.G. Campilho, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.