Have a personal or library account? Click to login
Effect of Pore Architecture of 3D Printed Open Porosity Cellular Structures on Their Resistance to Mechanical Loading: Part I – Experimental Studies Cover

Effect of Pore Architecture of 3D Printed Open Porosity Cellular Structures on Their Resistance to Mechanical Loading: Part I – Experimental Studies

Open Access
|Jul 2024

References

  1. Ruiz de Galarreta S, Jeffers JRT, Ghouse S. A validated finite element analysis procedure for porous structures. Mater Des. 2020 Apr 1;189:108546.
  2. Guerra Silva R, Torres MJ, Zahr Viñuela J. A Comparison of Miniature Lattice Structures Produced by Material Extrusion and Vat Photopolymerization Additive Manufacturing. Polymers (Basel) [Internet]. 2021 Jul 1 [cited 2023 Jan 30];13(13). Available from: https://pubmed.ncbi.nlm.nih.gov/34208960/
  3. Cipriani CE, Ha T, Martinez Defilló OB, Myneni M, Wang Y, Benjamin CC, et al. Structure–Processing–Property Relationships of 3D Printed Porous Polymeric Materials. ACS Mater Au. 2021 Sep 8;1(1): 69–80.
  4. Chen H, Han Q, Wang C, Liu Y, Chen B, Wang J. Porous Scaffold Design for Additive Manufacturing in Orthopedics: A Review. Front Bioeng Biotechnol. 2020 Jun 17;8:609.
  5. Tofail SAM, Koumoulos EP, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C. Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today. 2018 Jan 1;21(1):22–37.
  6. Gadomska-Gajadhur A, Łojek K, Szymaniak M, Gadomska A. Mate-riały porowate do regeneracji tkanki chrzęstnej i kostnej. Wyr Med. 2018;3.
  7. Kruk A, Gadomska-Gajadhur A, Ruskowski P, Chwojnowski A, Synoradzki L. Otrzymywanie polilaktydowych rusztowań komórkowych o strukturze gąbczastej – badania wstępne i optymalizacja procesu. Polimery. T. 62. 2017;2(2):118–26.
  8. Mierzejewska Ż. Technologia SLS – charakterystyka i zastosowanie selektywnego spiekania laserowego w inżynierii biomedycznej. J Technol Exploit Mech Eng. 2015;1:178–90.
  9. Maconachie T, Leary M, Lozanovski B, Zhang X, Qian M, Faruque O, et al. SLM lattice structures: Properties, performance, applications and challenges. Mater Des [Internet]. 2019 Dec 1 [cited 2023 Jun 16];183(10):108137. Available from: https://dx.doi.org/10.1115/1.4037305
  10. Maconachie T, Leary M, Lozanovski B, Zhang X, Qian M, Faruque O, et al. SLM lattice structures: Properties, performance, applications and challenges. Mater Des [Internet]. 2019;183:108137. Available from: https://doi.org/10.1016/j.matdes.2019.108137
  11. Uribe-Lam E, Treviño-Quintanilla CD, Cuan-Urquizo E, Olvera-Silva O. Use of additive manufacturing for the fabrication of cellular and lattice materials: a review. https://doi.org/101080/1042691420201819544 [Internet]. 2020 [cited 2023 Jun 16];36(3):257–80. Available from: https://www.tandfonline.com/doi/abs/10.1080/10426914.2020.1819544
  12. Tao W, Leu MC. Design of lattice structure for additive manufacturing. Int Symp Flex Autom ISFA 2016. 2016 Dec 16;325–32.
  13. Bhat C, Kumar A, Lin SC, Jeng JY. Design, fabrication, and properties evaluation of novel nested lattice structures. Addit Manuf. 2023 Apr 25;68:103510.
  14. Kantaros A, Piromalis D. Fabricating Lattice Structures via 3D Printing: The Case of Porous Bio-Engineered Scaffolds. Appl Mech 2021, Vol 2, Pages 289-302 [Internet]. 2021 May 25 [cited 2023 Jun 16];2(2):289–302. Available from: https://www.mdpi.com/2673-3161/2/2/18/htm
  15. Yuan S, Li S, Zhu J, Tang Y. Additive manufacturing of polymeric composites from material processing to structural design. Compos Part B Eng [Internet]. 2021;219(April):108903. Available from: https://doi.org/10.1016/j.compositesb.2021.108903
  16. Hossain U, Ghouse S, Nai K, Jeffers JR. Controlling and testing anisotropy in additively manufactured stochastic structures. Addit Manuf. 2021 Mar 1;39:101849.
  17. Pan C, Han Y, Lu J. Design and Optimization of Lattice Structures: A Review. Appl Sci 2020, Vol 10, Page 6374 [Internet]. 2020 Sep 13 [cited 2023 Jun 16];10(18):6374. Available from: https://www.mdpi.com/2076-3417/10/18/6374/htm
  18. Wang P;, Yang F;, Zhao J, Wang P, Yang F, Zhao J. Compression Behaviors and Mechanical Properties of Modified Face-Centered Cubic Lattice Structures under Quasi-Static and High-Speed Loading. Mater 2022, Vol 15, Page 1949 [Internet]. 2022 Mar 6 [cited 2022 Aug 5];15(5):1949. Available from: https://www.mdpi.com/1996-1944/15/5/1949/htm
  19. Beloshenko V, Beygelzimer Y, Chishko V, Savchenko B, Sova N, Verbylo D, et al. Mechanical Properties of Thermoplastic Polyurethane-Based Three-Dimensional-Printed Lattice Structures: Role of Build Orientation, Loading Direction, and Filler. 3D Print Addit Manuf [Internet]. 2021 May 14 [cited 2021 Nov 4];3dp.2021.0031. Available from: https://www.liebertpub.com/doi/abs/10.1089/3dp.2021.0031
  20. Li S, Yuan S, Zhu J, Zhang W, Tang Y, Wang C, et al. Optimal and adaptive lattice design considering process-induced material anisotropy and geometric inaccuracy for additive manufacturing. Struct Multidiscip Optim. 2022 Jan 1;65(1):1–16.
  21. Song J, Wang Y, Zhou W, Fan R, Yu B, Lu Y, et al. Topology optimization-guided lattice composites and their mechanical characterizations. Compos Part B Eng. 2019 Mar 1;160:402–11.
  22. Bahrami Babamiri B, Askari H, Hazeli K. Deformation mechanisms and post-yielding behavior of additively manufactured lattice structures. Mater Des. 2020 Mar 1;188.
  23. Yavas D, Liu Q, Zhang Z, Wu D. Design and fabrication of architected multi-material lattices with tunable stiffness, strength, and energy absorption. Mater Des [Internet]. 2022 May 1 [cited 2022 Nov 3];217:110613. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0264127522002349
  24. Yang L, Yan C, Cao W, Liu Z, Song B, Wen S, et al. Compression– compression fatigue behaviour of gyroid-type triply periodic minimal surface porous structures fabricated by selective laser melting. Acta Mater. 2019 Dec 1;181:49–66.
  25. Park JH, Park K. Compressive behavior of soft lattice structures and their application to functional compliance control. Addit Manuf. 2020 May 1;33:101148.
  26. Zhang L, Lifton J, Hu Z, Hong R, Feih S. Influence of geometric defects on the compression behaviour of thin shell lattices fabricated by micro laser powder bed fusion. Addit Manuf [Internet]. 2022 Oct 1 [cited 2022 Dec 20];58:103038. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2214860422004304
  27. Zhao Z, Wu Z, Yao D, Wei Y, Li J. Mechanical properties and failure mechanisms of polyamide 12 gradient scaffolds developed with selective laser sintering. J Mech Behav Biomed Mater. 2023 Jul 1;143:105915.
  28. Han C, Li Y, Wang Q, Wen S, Wei Q, Yan C, et al. Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants. J Mech Behav Biomed Mater. 2018 Apr 1;80:119–27.
DOI: https://doi.org/10.2478/ama-2024-0046 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 419 - 426
Submitted on: Jun 20, 2023
Accepted on: Feb 27, 2024
Published on: Jul 17, 2024
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Monika Bernacka, Mehmet Aladag, Adrian Dubicki, Izabela Zgłobicka, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.