Have a personal or library account? Click to login
Effect of Pore Architecture of 3D Printed Open Porosity Cellular Structures on Their Resistance to Mechanical Loading: Part I – Experimental Studies Cover

Effect of Pore Architecture of 3D Printed Open Porosity Cellular Structures on Their Resistance to Mechanical Loading: Part I – Experimental Studies

Open Access
|Jul 2024

Abstract

The development of additive manufacturing (AM) techniques has sparked interest in porous structures that can be customized in terms of size, shape, and arrangement of pores. Porous lattice structure (LS, called also lattice struct) offer superior specific stiffness and strength, making them ideal components for lightweight products with energy absorption and heat transfer capabilities. They find applications in industries such as aerospace, aeronautics, automotive, and bone ingrowth applications. One of the main advantages of additive manufacturing is the freedom of design, control over geometry and architecture, cost and time savings, waste reduction, and product customization. However, the designation of appropriate struct/pore geometry to achieve the desired properties and structure remains a challenge. In this part of the study, five lattice structs with various pore sizes, with two volume fractions for each, and shapes (ellipsoidal, helical, X-shape, trapezoidal, and triangular) were designed and manufactured using selective laser sintering (SLS) additive manufacturing technology. Mechanical properties were tested through uniaxial compression, and the apparent stress-strain curves were analyzed. The results showed that the compression tests revealed both monotonic and non-monotonic stress-strain curves, indicating different compression behaviors among the structures. The helical structure exhibited the highest resistance to compression, while other structures showed similarities in their mechanical properties. In Part II of this study provides a comprehensive analysis of these findings, emphasizing the potential of purpose-designed porous structures for various engineering applications.

DOI: https://doi.org/10.2478/ama-2024-0046 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 419 - 426
Submitted on: Jun 20, 2023
Accepted on: Feb 27, 2024
Published on: Jul 17, 2024
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Monika Bernacka, Mehmet Aladag, Adrian Dubicki, Izabela Zgłobicka, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.