Have a personal or library account? Click to login
Influence of the Manipulator Configuration on Vibration Effects Cover

Influence of the Manipulator Configuration on Vibration Effects

Open Access
|Dec 2023

References

  1. Bauer J, Friedmann M, Hemker T, Pischan M, Reinl C, Abele E, Stryk OV. Analysis of Industrial Robot Structure and Milling Process Interaction for Path Manipulation, in: Denkena, B., Hollmann, F. (Eds.), Process Machine Interactions, Lecture Notes in Production Engineering. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013; 245–263. https://doi.org/10.1007/978-3-642-32448-2_11
  2. Ji W, Wang L. Industrial robotic machining: a review. Int. J. Adv. Manuf. Technol. 2019; 103, 1239–1255. https://doi.org/10.1007/s00170-019-03403-z
  3. Iglesias I, Sebastián MA, Ares JE. Overview of the State of Robotic Machining: Current Situation and Future Potential. Procedia Engineering. 2015;132, 911–917. https://doi.org/10.1016/j.proeng.2015.12.577
  4. Burghardt A, Szybicki D, Kurc K, Muszyńska M. Robotic Grinding Process of Turboprop Engine Compressor Blades with Active Selection of Contact Force. Teh. Vjesn. 2022; 29(1), 15-22. https://doi.org/10.17559/TV-20190710141137
  5. Gierlak P. Adaptive Position/Force Control of a Robotic Manipulator in Contact with a Flexible and Uncertain Environment. Robotics. 2021; 10, 32. https://doi.org/10.3390/robotics10010032
  6. Bisu C, Cherif M, Gerard A. K’nevez JY. Dynamic Behavior Analysis for a Six Axis Industrial Machining Robot. 2011; AMR 423, 65–76. https://doi.org/10.4028/www.scientific.net/AMR.423.65
  7. Huynh HN, Assadi H, Rivière-Lorphèvre E, Verlinden O, Ahmadi K. Modelling the dynamics of industrial robots for milling operations. Robot. Comput-Integr. Manuf. 2020; 61, 101852. https://doi.org/10.1016/j.rcim.2019.101852
  8. Nguyen V, Johnson J, Melkote S. Active vibration suppression in robotic milling using optimal control. Int. J. Mach. Tools Manuf. 2020; 152, 103541. https://doi.org/10.1016/j.ijmachtools.2020.103541
  9. Busch M, Schnoes F, Elsharkawy A, Zaeh MF. Methodology for model-based uncertainty quantification of the vibrational properties of machining robots. Robot. Comput-Integr. Manuf. 2022; 73, 102243. https://doi.org/10.1016/j.rcim.2021.102243
  10. Tunc LT, Gonul B. Effect of quasi-static motion on the dynamics and stability of robotic milling. 2021; CIRP Annals 70, 305–308. https://doi.org/10.1016/j.cirp.2021.04.077
  11. İIman MM, Yavuz Ş, Karagülle H, Uysal A. Hybrid vibration control of an industrial CFRP composite robot-manipulator system based on reduced order model. Simulation Modelling Practice and Theory, 2022; 115: 102456. https://doi.org/10.1016/j.simpat.2021.102456
  12. İIman MM, Yavuz Ş, Yildirim TP. Generalized input preshaping vibration control approach for multi-link flexible manipulators using-machine intelligence. Mechatronics, 2022; 82: 102735. doi.org/10.1016/j.mechatronics.2021.102735
  13. Dwivedy SK, Eberhard P. Dynamic analysis of flexible manipulators, a literature review. Mech. Mach. 2006; Theory 41, 749–777. https://doi.org/10.1016/j.mechmachtheory.2006.01.014
  14. Siciliano B, Wit CC, Bastin G. Theory of Robot Control. Springer Science & Business Media. 2012.
  15. Goldsmith PB, Francis BA, Goldenberg AA. Stability of hybrid position/force control applied to manipulators with flexible joints. Int. J. Robot. Autom. 1999; 14(4), 146-160.
  16. Vukobratovic M, Potkonjak V, Matijevic V. Dynamics of Robots with Contact Tasks. Springer Netherlands, Dordrecht. 2003. https://doi.org/10.1007/978-94-017-0397-0
  17. Zhu Q, Mao Y, Xiong R, Wu J. Adaptive Torque and Position Control for a Legged Robot Based on a Series Elastic Actuator. Int. J. Adv. Robot. Syst. 2016; 13, 26. https://doi.org/10.5772/62204
  18. Do T.-T, Vu V.-H, Liu Z. Linearization of dynamic equations for vibration and modal analysis of flexible joint manipulators. Mech. Mach. 2022; Theory 167, 104516. https://doi.org/10.1016/j.mechmachtheory.2021.104516
  19. Endo T, Kawasaki H. Bending moment-based force control of flexible arm under gravity. Mech. Mach. 2014; Theory 79, 217–229. https://doi.org/10.1016/j.mechmachthory.2014.04.013
  20. Cheong J, Youm Y. System mode approach for analysis of horizontal vibration of 3-D two-link flexible manipulators. J. Sound Vib. 2003; 268, 49–70. https://doi.org/10.1016/S0022-460X(02)01474-8
  21. Thomsen DK, Søe-Knudsen R, Balling O, Zhang X. Vibration control of industrial robot arms by multi-mode time-varying input shaping. Mech. Mach. 2021; Theory 155, 104072. https://doi.org/10.1016/j.mechmachtheory.2020.104072
  22. Yavuz Ş, İIman M. M. Modified reduced-order modeling of a flexible robot-manipulator and model-associative vibration control implementation. Extreme Mechanics Letters. 2020; 37, 100723.
  23. Khorasani K. Adaptive control of flexible joint robots. Proceedings. 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, USA, 1991; vol.3, 2127-2134. https://doi:10.1109/ROBOT.1991.131942
  24. Mejri S, Gagnol V, Le TP, Sabourin L, Ray P. Dynamic characterization of machining robot and stability analysis. Int J Adv Manuf Technol 82, 2016; 351–359. https://doi.org/10.1007/s00170-015-7336-3
DOI: https://doi.org/10.2478/ama-2023-0060 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 515 - 522
Submitted on: Dec 28, 2022
|
Accepted on: May 24, 2023
|
Published on: Dec 30, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Paulina Pietruś, Piotr Gierlak, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.