References
- Bauer J, Friedmann M, Hemker T, Pischan M, Reinl C, Abele E, Stryk OV. Analysis of Industrial Robot Structure and Milling Process Interaction for Path Manipulation, in: Denkena, B., Hollmann, F. (Eds.), Process Machine Interactions, Lecture Notes in Production Engineering. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013; 245–263. https://doi.org/10.1007/978-3-642-32448-2_11
- Ji W, Wang L. Industrial robotic machining: a review. Int. J. Adv. Manuf. Technol. 2019; 103, 1239–1255. https://doi.org/10.1007/s00170-019-03403-z
- Iglesias I, Sebastián MA, Ares JE. Overview of the State of Robotic Machining: Current Situation and Future Potential. Procedia Engineering. 2015;132, 911–917. https://doi.org/10.1016/j.proeng.2015.12.577
- Burghardt A, Szybicki D, Kurc K, Muszyńska M. Robotic Grinding Process of Turboprop Engine Compressor Blades with Active Selection of Contact Force. Teh. Vjesn. 2022; 29(1), 15-22. https://doi.org/10.17559/TV-20190710141137
- Gierlak P. Adaptive Position/Force Control of a Robotic Manipulator in Contact with a Flexible and Uncertain Environment. Robotics. 2021; 10, 32. https://doi.org/10.3390/robotics10010032
- Bisu C, Cherif M, Gerard A. K’nevez JY. Dynamic Behavior Analysis for a Six Axis Industrial Machining Robot. 2011; AMR 423, 65–76. https://doi.org/10.4028/www.scientific.net/AMR.423.65
- Huynh HN, Assadi H, Rivière-Lorphèvre E, Verlinden O, Ahmadi K. Modelling the dynamics of industrial robots for milling operations. Robot. Comput-Integr. Manuf. 2020; 61, 101852. https://doi.org/10.1016/j.rcim.2019.101852
- Nguyen V, Johnson J, Melkote S. Active vibration suppression in robotic milling using optimal control. Int. J. Mach. Tools Manuf. 2020; 152, 103541. https://doi.org/10.1016/j.ijmachtools.2020.103541
- Busch M, Schnoes F, Elsharkawy A, Zaeh MF. Methodology for model-based uncertainty quantification of the vibrational properties of machining robots. Robot. Comput-Integr. Manuf. 2022; 73, 102243. https://doi.org/10.1016/j.rcim.2021.102243
- Tunc LT, Gonul B. Effect of quasi-static motion on the dynamics and stability of robotic milling. 2021; CIRP Annals 70, 305–308. https://doi.org/10.1016/j.cirp.2021.04.077
- İIman MM, Yavuz Ş, Karagülle H, Uysal A. Hybrid vibration control of an industrial CFRP composite robot-manipulator system based on reduced order model. Simulation Modelling Practice and Theory, 2022; 115: 102456. https://doi.org/10.1016/j.simpat.2021.102456
- İIman MM, Yavuz Ş, Yildirim TP. Generalized input preshaping vibration control approach for multi-link flexible manipulators using-machine intelligence. Mechatronics, 2022; 82: 102735. doi.org/10.1016/j.mechatronics.2021.102735
- Dwivedy SK, Eberhard P. Dynamic analysis of flexible manipulators, a literature review. Mech. Mach. 2006; Theory 41, 749–777. https://doi.org/10.1016/j.mechmachtheory.2006.01.014
- Siciliano B, Wit CC, Bastin G. Theory of Robot Control. Springer Science & Business Media. 2012.
- Goldsmith PB, Francis BA, Goldenberg AA. Stability of hybrid position/force control applied to manipulators with flexible joints. Int. J. Robot. Autom. 1999; 14(4), 146-160.
- Vukobratovic M, Potkonjak V, Matijevic V. Dynamics of Robots with Contact Tasks. Springer Netherlands, Dordrecht. 2003. https://doi.org/10.1007/978-94-017-0397-0
- Zhu Q, Mao Y, Xiong R, Wu J. Adaptive Torque and Position Control for a Legged Robot Based on a Series Elastic Actuator. Int. J. Adv. Robot. Syst. 2016; 13, 26. https://doi.org/10.5772/62204
- Do T.-T, Vu V.-H, Liu Z. Linearization of dynamic equations for vibration and modal analysis of flexible joint manipulators. Mech. Mach. 2022; Theory 167, 104516. https://doi.org/10.1016/j.mechmachtheory.2021.104516
- Endo T, Kawasaki H. Bending moment-based force control of flexible arm under gravity. Mech. Mach. 2014; Theory 79, 217–229. https://doi.org/10.1016/j.mechmachthory.2014.04.013
- Cheong J, Youm Y. System mode approach for analysis of horizontal vibration of 3-D two-link flexible manipulators. J. Sound Vib. 2003; 268, 49–70. https://doi.org/10.1016/S0022-460X(02)01474-8
- Thomsen DK, Søe-Knudsen R, Balling O, Zhang X. Vibration control of industrial robot arms by multi-mode time-varying input shaping. Mech. Mach. 2021; Theory 155, 104072. https://doi.org/10.1016/j.mechmachtheory.2020.104072
- Yavuz Ş, İIman M. M. Modified reduced-order modeling of a flexible robot-manipulator and model-associative vibration control implementation. Extreme Mechanics Letters. 2020; 37, 100723.
- Khorasani K. Adaptive control of flexible joint robots. Proceedings. 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, USA, 1991; vol.3, 2127-2134. https://doi:10.1109/ROBOT.1991.131942
- Mejri S, Gagnol V, Le TP, Sabourin L, Ray P. Dynamic characterization of machining robot and stability analysis. Int J Adv Manuf Technol 82, 2016; 351–359. https://doi.org/10.1007/s00170-015-7336-3