Gracia L, Solanes JE, Muñoz-Benavent P, Valls Miro J, Perez-Vidal C, Tornero J. Adaptive Sliding Mode Control for Robotic Surface Treatment Using Force Feedback. Mechatronics. 2018;52:102–18.
Vukobratovič M, Ekalo Y, Rodič A. How to Apply Hybrid Position/Force Control to Robots Interacting with Dynamic Environment. W: Bianchi G, Guinot JC, Rzymkowski C, Eds. Romansy 14 [Internet]. Vienna: Springer Vienna; 2002 [cited 13 december 2022]. 249–58. Available from: http://link.springer.com/10.1007/978-3-7091-2552-6_27
Burghardt A, Szybicki D, Kurc K, Muszyñska M, Mucha J. Experimental Study of Inconel 718 Surface Treatment by Edge Robotic Deburring with Force Control. Strength Mater. 2017;49(4):594–604.
Duan J, Gan Y, Chen M, Dai X. Adaptive variable impedance control for dynamic contact force tracking in uncertain environment. Robot Auton Syst. 2018;102:54–65.
Ravandi KA, Khanmirza E, Daneshjou K. Hybrid force/position control of robotic arms manipulating in uncertain environments based on adaptive fuzzy sliding mode control. Appl Soft Comput. 2018;70:864–74.
Wang W, Guo Q, Yang Z, Jiang Y, Xu J. A state-of-the-art review on robotic milling of complex parts with high efficiency and precision. Robot Comput-Integr Manuf. 2023;79:102436.
Robotic Grinding Process of Turboprop Engine Compressor Blades with Active Selection of Contact Force. Teh Vjesn - Tech Gaz [Internet]. 2022 Feb 15 [cited 2022 Dec 7];29(1). Available from: https://hrcak.srce.hr/269299.
Wang Z, Zou L, Luo G, Lv C, Huang Y. A novel selected force controlling method for improving robotic grinding accuracy of complex curved blade. ISA Trans. 2022;129:642–58.
Ke X, Yu Y, Li K, Wang T, Zhong B, Wang Z, et al. Review on robot-assisted polishing: Status and future trends. Robot Comput-Integr Manuf. 2023;80:102482.
Do TT, Vu VH, Liu Z. Linearization of dynamic equations for vibration and modal analysis of flexible joint manipulators. Mech Mach Theory. 2022;167:104516.
Cheng X, Zhang Y, Liu H, Wollherr D, Buss M. Adaptive neural backstepping control for flexible-joint robot manipulator with bounded torque inputs. Neurocomputing. 2021;458:70–86.
Lewis FL, Jagannathan S, Yeşildirek A. Neural network control of robot manipulators and nonlinear systems. London: Taylor & Francis; 1999. 442 p. (The Taylor & Francis systems and control book series).
Yin X, Pan L, Cai S. Robust adaptive fuzzy sliding mode trajectory tracking control for serial robotic manipulators. Robot Comput-Integr Manuf. 2021;72:101884.
Yang Z, Peng J, Liu Y. Adaptive neural network force tracking impedance control for uncertain robotic manipulator based on nonlinear velocity observer. Neurocomputing. 2019;331:263–80.
de Campos Souza PV. Fuzzy neural networks and neuro-fuzzy networks: A review the main techniques and applications used in the literature. Appl Soft Comput. 2020;92:106275.
Refoufi S, Benmahammed K. Control of a manipulator robot by neuro-fuzzy subsets form approach control optimized by the genetic algorithms. ISA Trans. 2018;77:133–45.
Wang Z, Zou L, Su X, Luo G, Li R, Huang Y. Hybrid force/position control in workspace of robotic manipulator in uncertain environments based on adaptive fuzzy control. Robot Auton Syst. 2021 Nov;145:103870.
Garcia-Rodriguez R, Parra-Vega V. Normal and tangent force neuro-fuzzy control of a soft-tip robot with unknown kinematics. Eng Appl Artif Intell. 2017 Oct;65:43–50.
Kumar N, Panwar V, Sukavanam N, Sharma SP, Borm JH. Neural network based hybrid force/position control for robot manipulators. Int J Precis Eng Manuf. 2011;12(3):419–26.