References
- Podlubny I. Fractional Differential Equations San Diego: Academic Press; 1999.
- Dzieliński A, Sierociuk D, Sarwas G. Some applications of fractional order calculus. Bulletin of the Polish Academy of Sciences, Technical Sciences. 2010.
- Caponetto R, Dongola G, Fortuna L, Petra I. Fractional order systems: Modelling and Control Applications. University of California ed. Chua LO, editor. Berkeley: World Scientific Series on Nonlinear Science; 2010.
- Das S. Functional Fractional Calculus for System Identification and Controls Berlin: Springer; 2010.
- Gal CG, Warma M. Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions. Evolution Equations and Control Theory. 2016.
- Popescu E. On the fractional Cauchy problem associated with a feller semigroup. Mathematical Reports.; 2010.
- Sierociuk D, Skovranek T, Macias M, Podlubny I. Diffusion process modelling by using fractional-order models. Applied Mathematics and Computation. 2015.
- Gómez JF, Torres L, Escobar RF. Fractional derivatives with Mittag-Leffler kernel. Trends and applications in science and engineering Kacprzyk J, editor. Switzerland: Springer; 2019.
- Boudaoui A, El hadj Moussa Y, Hammouch, Ullah S. A fractional-order model describing the dynamics of the novel coronavirus (covid-19) with nonsingular kernel. Chaos, Solitons and Fractals. 2021; 146(110859):111.
- Muhammad Farman M, Akgül A, Askar S, Botmart T. Modelling and analysis of fractional order zika model. AIMS Mathematics. 2022.
- Oprzędkiewicz K, Gawin E, Mitkowski W. Modeling heat distribution with the use of a non-integer order, state space model. International Journal of Applied Mathematics and Com-puter Science. 2016.
- Oprzędkiewicz K, Gawin E, Mitkowski W. Parameter identification for non-integer order, state space models of heat plant. In MMAR 2016 : 21th international conference on Methods and Models in Automation and Robotics; 2016; Międzyzdroje, Poland. p. 184-188.
- Oprzędkiewicz K, Stanisławski R, Gawin E, Mitkowski W. A new algorithm for a cfe approximated solution of a discrete-time non integer-order state equation. Bulletin of the Polish Academy of Sciences. Technical Sciences. 2017; 65(4):429-437.
- Oprzędkiewicz K, Mitkowski W, Gawin E. An accuracy estimation for a non-integer order, discrete, state space model of heat transfer process. In Automation 2017 : innovations in automation, robotics and measurement techniques; 2017; Warsaw, Poland. p. 86-98.
- Oprzędkiewicz K, Mitkowski W, Gawin E, Dziedzic K. The Caputo vs. Caputo-Fabrizio operators in modelling of heat transfer process. Bulletin of the Polish Academy of Sciences. Technical Sciences. 2018; 66(4):501-507.
- Oprzędkiewicz K, Gawin E. The practical stability of the discrete, fractional order, state space model of the heat transfer process. Archives of Control Sciences. 2018.
- Oprzędkiewicz K, Mitkowski W. A memory efficient non in-teger order discrete time state space model of a heat transfer process. International Journal of Applied Mathematics and Computer Science. 2018.
- Oprzędkiewicz K. Non integer order, state space model of heat transfer process using Atangana-Baleanu operator. Bulletin of the Polish Academy of Sciences. Technical Sciences. 2020; 68(1):43-50.
- Długosz M, Skruch P. The application of fractional-order models for thermal process modelling inside buildings. Journal of Building Physics. 2015; 1(1):1-13.
- Ryms M, Tesch K, Lewandowski W. The use of thermal imaging camera to estimate velocity profiles based on tem-perature distribution in a free convection boundary layer. International Journal of Heat and Mass Transfer. 2021.
- Khan H, Shah R, Kumam P, Arif M. Analytical solutions of fractional order heat and wave equations by the natural transform decomposition method. Entropy. 2019.
- Olsen-Kettle L. Numerical solution of partial differential equa-tions Brisbane: The University of Queensland; 2011.
- Al-Omari SK. A fractional Fourier integral operator and its extension to classes of function spaces. Advances in Difference Equations. 2018; 1(195):19.
- Oprzędkiewicz K, Mitkowski W, Rosół M. Fractional order model of the two dimensional heat transfer process. Energies. 2021.
- Kaczorek T. Singular fractional linear systems and electrical circuits. International Journal of Applied Mathematics and Computer Science. 2011.
- Kaczorek T, Rogowski K. Fractional Linear Systems and Electrical Circuits Białystok: Publishing House of the Bialystok University of Technology; 2014.
- Bandyopadhyay B, Kamal S. Solution, stability and realization of fractional order differential equation. In A Sliding Mode Approach, Lecture Notes in Electrical Engi-neering 317. Switzerland: Springer; 2015. p. 5590.
- Wyrwas M, Mozyrska D, Girejko E. Comparison of h-difference fractional operators. In Mitkowski W, editor. Advances in the Theory and Applications of Non-integer Order Systems. Switzerland: Springer; 2013. p. 1-178.
- Berger J, Gasparin S, Mazuroski W, Mende N. An effi-cient two-dimensional heat transfer model for building enve-lopes. An International Journal of Computation and Methodology, Numerical Heat Transfer, Part A: Applications. 2021; 79(3):163194.
- Moitsheki RJ, Rowjee A. Steady heat transfer through a two-dimensional rectangular straight fin. Mathematical Problems in Engineering. 2011.
- Yang L, Sun B, Sun X. Inversion of thermal conductivity in two-dimensional unsteady-state heat transfer system based on finite difference method and artificial bee colony. Applied Sciences. 2019.
- Mitkowski W. Outline of Control Theory Kraków: Publishing House AGH; 2019.
- Brzek M. Detection and localisation structural damage in selected geometric domains using spectral theory (in Polish). PhD thesis ed. Mitkowski W, editor. Kraków: AGH University of Science and Technology; 2019.
- Michlin SG, Smolicki CL. Approximate methods for solving differential and integral equations (in Polish) Warszawa: PWN; 1970.