Have a personal or library account? Click to login
Generalised Regression Neural Network (GRNN) Architecture-Based Motion Planning and Control of an E-Puck Robot in V-REP Software Platform Cover

Generalised Regression Neural Network (GRNN) Architecture-Based Motion Planning and Control of an E-Puck Robot in V-REP Software Platform

Open Access
|Nov 2021

References

  1. 1. Almeida T., Santos V., Mozos O. M., Lourenço B. (2021), Comparative Analysis of Deep Neural Networks for the Detection and Decoding of Data Matrix Landmarks in Cluttered Indoor Environments. Journal of Intelligent & Robotic Systems, 103(1), 1-14.10.1007/s10846-021-01442-x
  2. 2. Ben Jabeur C., Seddik H. (2020), Design of a PID optimized neural networks and PD fuzzy logic controllers for a two-wheeled mobile robot, Asian Journal of Control, 22(1), 1–19.10.1002/asjc.2356
  3. 3. Elmi Z., Efe M. Ö. (2020), Online path planning of mobile robot using grasshopper algorithm in a dynamic and unknown environment, Journal of Experimental & Theoretical Artificial Intelligence, 32, 1–19.10.1080/0952813X.2020.1764631
  4. 4. Hadi N. H., Younus K. K. (2020), Path tracking and backstepping control for a wheeled mobile robot (WMR) in a slipping environment, IOP Conference Series: Materials Science and Engineering, 671, 1–17.10.1088/1757-899X/671/1/012005
  5. 5. Khan H., Khatoon S., Gaur P. (2021), Comparison of various controller design for the speed control of DC motors used in two wheeled mobile robots. International Journal of Information Technology, 13(2), 713-720.10.1007/s41870-020-00577-8
  6. 6. Long Y., Zuo Z., Su Y., Li J., Zhang H. (2020), An A*-based Bacterial Foraging Optimisation Algorithm for Global Path Planning of Unmanned Surface Vehicles, The Journal of Navigation, 73(3), 1–16.10.1017/S0373463320000247
  7. 7. Narasimhan G. E., Bettyjane J. (2020), Implementation and study of a novel approach to control adaptive cooperative robot using fuzzy rules. International Jopurnal of Information Technology, 1–8. https://doi.org/10.1007/s41870-020-00459-z10.1007/s41870-020-00459-z
  8. 8. Nedjah N., Junior L. S. (2019), Review of methodologies and tasks in swarm robotics towards standardization, Swarm and Evolutionary Computation, 50, 1–26.10.1016/j.swevo.2019.100565
  9. 9. Osaba E., Del Ser J., Iglesias A., Yang X. S. (2019), Soft Computing for Swarm Robotics: New Trends and Applications, Journal of Computational Science, 39, 1–4.10.1016/j.jocs.2019.101049
  10. 10. Pandey A., Kashyap A. K., Parhi D. R., Patle, B. K. (2019), Autonomous mobile robot navigation between static and dynamic obstacles using multiple ANFIS architecture, World Journal of Engineering, 16(2), 275–286.10.1108/WJE-03-2018-0092
  11. 11. Pandey A., Parhi D. R. (2016), New algorithm for behaviour-based mobile robot navigation in cluttered environment using neural network architecture, World Journal of Engineering, 13(2), 129–141.10.1108/WJE-04-2016-018
  12. 12. Pandey K. K., Parhi D. R. (2019), Trajectory Planning and the Target Search by the Mobile Robot in an Environment Using a Behavior-Based Neural Network Approach, Robotica, 37(1), 1–15.
  13. 13. Protik P., Das S., Islam M. R. (2019, October). Chemical Reaction Optimization for Mobile Robot Path Planning. International Joint Conference on Computational Intelligence, Springer, Singapore, 191–203.10.1007/978-981-15-3607-6_15
  14. 14. Quan Y., Ouyang H., Zhang C., Li S., Gao L. (2021), Mobile Robot Dynamic Path Planning Based on Self-adaptive Harmony Search Algorithm and Morphin Algorithm. IEEE Access, 10.1109/ACCESS.2021.309870610.1109/ACCESS.2021.3098706
  15. 15. Singh N.H, Thongam K. (2018), Neural network-based approaches for mobile robot navigation in static and moving obstacles environments, Intelligent Service Robotics, 12(1), 55–67.10.1007/s11370-018-0260-2
  16. 16. Specht D. F. (1991), A general regression neural network. IEEE transactions on neural networks, 2(6), 568–576.10.1109/72.9793418282872
  17. 17. Teli T. A., Wani M. A. (2021), A fuzzy based local minima avoidance path planning in autonomous robots. International Journal of Information Technology, 13(1), 33-40.10.1007/s41870-020-00547-0
  18. 18. Tripathy H. K., Mishra S., Thakkar H. K., Rai D. (2021), CARE: A Collision-Aware Mobile Robot Navigation in Grid Environment using Improved Breadth First Search. Computers & Electrical Engineering, 94, 107327.10.1016/j.compeleceng.2021.107327
  19. 19. Wang M. (2021), Real-time path optimization of mobile robots based on improved genetic algorithm. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 235(5), 646-651.10.1177/0959651820952207
  20. 20. Zhao T., Xiang Y., Dian S., Guo R., Li S. (2020), Hierarchical interval type-2 fuzzy path planning based on genetic optimization, Journal of Intelligent & Fuzzy Systems, 32, 1-12.10.3233/JIFS-191864
DOI: https://doi.org/10.2478/ama-2021-0027 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 209 - 214
Submitted on: Jun 1, 2020
Accepted on: Aug 31, 2021
Published on: Nov 29, 2021
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Vikas Singh Panwar, Anish Pandey, Muhammad Ehtesham Hasan, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.