Have a personal or library account? Click to login
Comparative Study of the Parallel and Angular Electrical Gripper for Industrial Applications Cover

Comparative Study of the Parallel and Angular Electrical Gripper for Industrial Applications

Open Access
|Jun 2021

References

  1. 1. Birglen L., Schlicht, T. (2018), A statistical review of industrial robotic grippers., Robotics and Computer-Integrated Manufacturing, 49, 88-97.10.1016/j.rcim.2017.05.007
  2. 2. Chen Z., Xu J., Yu L., Xiong Y., Zhu H. (2014, May), Design and implementation of the electric gripper control system based on the DSP. In The 26th Chinese Control and Decision Conference (2014 CCDC), (pp. 3513-3517, ). IEEE.10.1109/CCDC.2014.6852787
  3. 3. Datta R., Pradhan S., Bhattacharya B. (2015), Analysis and design optimization of a robotic gripper using multiobjective genetic algorithm., IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46(1), 16-26.
  4. 4. Fotuhi M. J., Bingul Z. (2021), Fuzzy torque trajectory control of a rotary series elastic actuator with nonlinear friction compensation., ISA transactions.10.1016/j.isatra.2021.01.020
  5. 5. Fotuhi M. J., & Bingul Z. (2021), Novel fractional hybrid impedance control of series elastic muscle-tendon actuator., Industrial Robot: the international journal of robotics research and application.10.1108/IR-10-2020-0236
  6. 6. Fotuhi M. J., Yılmaz O., Bingul Z. (2020), Human postural ankle torque control model during standing posture with a series elastic muscle-tendon actuator., SN Applied Sciences, 2(2), 1-8.10.1007/s42452-020-1955-5
  7. 7. Hassan A., Abomoharam M. (2017), Modeling and design optimization of a robot gripper mechanism., Robotics and Computer-Integrated Manufacturing, 46, 94-103.10.1016/j.rcim.2016.12.012
  8. 8. Heilala J., Ropponen T., & Airila M. (1992), Mechatronic design for industrial grippers., Mechatronics, 2(3), 239-255.10.1016/0957-4158(92)90019-K
  9. 9. Honarpardaz M., Tarkian M., Ölvander J., Feng X. (2017), Finger design automation for industrial robot grippers: A review., Robotics and Autonomous Systems, 87, 104-119.10.1016/j.robot.2016.10.003
  10. 10. Hu Z., Wan W., Harada K. (2019), Designing a mechanical tool for robots with two-finger parallel grippers., IEEE Robotics and Automation Letters, 4(3), 2981-2988.
  11. 11. Kuang L., Lou Y., Song S. (2017), Design and fabrication of a novel force sensor for robot grippers., IEEE Sensors Journal, 18(4), 1410-1418.
  12. 12. Kumar R., Mehta U., Chand P. (2017), A low cost linear force feedback control system for a two-fingered parallel configuration gripper., Procedia computer science, 105, 264-269.10.1016/j.procs.2017.01.220
  13. 13. Li Q. M., Qin Q. H., Zhang S. W., Deng H. (2011), Optimal design for heavy forging robot grippers., In Applied Mechanics and Materials (Vol., 44, pp. 743-747)., Trans Tech Publications Ltd.10.4028/www.scientific.net/AMM.44-47.743
  14. 14. Li X., Chen W., Lin W., Low K. H. (2017), A variable stiffness robotic gripper based on structure-controlled principle., IEEE Transactions on Automation Science and Engineering, 15(3), 1104-1113.
  15. 15. Liu C. H., Chung F. M., Chen Y., Chiu C. H., Chen T. L. (2020), Optimal Design of a Motor-Driven Three-Finger Soft Robotic Gripper., IEEE/ASME Transactions on Mechatronics, 25(4), 1830-1840.10.1109/TMECH.2020.2997743
  16. 16. Liu Y., Zhang Y., Xu Q. (2016), Design and control of a novel compliant constant-force gripper based on buckled fixed-guided beams., IEEE/ASME Transactions on Mechatronics, 22(1), 476-486.
  17. 17. Lu, Y., Xie, Z., Wang, J., Yue, H., Wu, M., & Liu, Y. (2019), A novel design of a parallel gripper actuated by a large-stroke shape memory alloy actuator., International Journal of Mechanical Sciences, 159, 74-80.10.1016/j.ijmecsci.2019.05.041
  18. 18. Najjari B., Barakati S. M., Mohammadi A., Futohi M. J., Bostanian M. (2014), Position control of an electro-pneumatic system based on PWM technique and FLC., ISA transactions, 53(2), 647-657.10.1016/j.isatra.2013.12.02324485509
  19. 19. Nanda A. P. (2010), Design & Development of a Two-jaw parallel Pneumatic Gripper for Robotic Manipulation (Doctoral dissertation).
  20. 20. Park T. M., Won S. Y., Lee S. R., Sziebig G. (2016, June), Force feedback based gripper control on a robotic arm. In, 2016 IEEE 20th Jubilee International Conference on Intelligent Engineering Systems (INES), (pp. 107-112, ). IEEE.10.1109/INES.2016.7555102
  21. 21. Pham D. T., Yeo S. H. (1991), Strategies for gripper design and selection in robotic assembly., The International Journal of Production Research, 29(2), 303-316.10.1080/00207549108930072
  22. 22. Shaw J. S., Dubey V. (2016, August), Design of servo actuated robotic gripper using force control for range of objects., In 2016 International Conference on Advanced Robotics and Intelligent Systems (ARIS) (pp. 1-6). ), IEEE.10.1109/ARIS.2016.7886619
  23. 23. Shin D. H., Park T. S., Jeong C. P., Kim Y. G., An J. N. (2012), Study of torsion spring’s parameters with angular type grippers., In Advanced Materials Research (Vol., 502, pp. 355-359).. Trans Tech Publications Ltd.10.4028/www.scientific.net/AMR.502.355
  24. 24. Su K. H., Zhong Y. H. (2018, July), Design of Handling Gripper and its Application to Smart Pet Robot., In 2018 International Conference on Machine Learning and Cybernetics (ICMLC) (Vol., 1, pp. 105-108). IEEE..10.1109/ICMLC.2018.8527055
  25. 25. Tai K., El-Sayed A. R., Shahriari M., Biglarbegian M., Mahmud S. (2016), State of the art robotic grippers and applications., Robotics, 5(2), 11.10.3390/robotics5020011
  26. 26. Varanasi K. K., & Nayfeh S. A. (2004), The dynamics of lead-screw drives: low-order modeling and experiments., J. Dyn. Sys., Meas., Control, 126(2), 388-396.10.1115/1.1771690
  27. 27. Wang X., Xiao Y., Fan X., & Zhao Y. (2016, May), Design and grip force control of dual-motor drive electric gripper with parallel fingers., In 2016 IEEE Information Technology, Networking, Electronic and Automation Control Conference, (pp. 696-700, ). IEEE.10.1109/ITNEC.2016.7560450
  28. 28. Xu F., Wang B., Shen J., Hu J., Jiang G. (2018), Design and realization of the claw gripper system of a climbing robot., Journal of Intelligent & Robotic Systems, 89(3), 301-317.
DOI: https://doi.org/10.2478/ama-2021-0010 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 66 - 73
Submitted on: Oct 22, 2020
Accepted on: May 31, 2021
Published on: Jun 30, 2021
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Mohammad Javad Fotuhi, Zafer Bingul, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.