Have a personal or library account? Click to login
Identification of Analytical Dependencies of the Operational Characteristics of the Workpiece Clamping Mechanisms with the Rotary Movement of the Input Link Cover

Identification of Analytical Dependencies of the Operational Characteristics of the Workpiece Clamping Mechanisms with the Rotary Movement of the Input Link

Open Access
|May 2021

References

  1. 1. Alquraan T., Kuznetsov Yu., Tsvyd T. (2016) High-speed clamping Mechanism of the CNC lathe with compensation of centrifugal forces, Procedia engineering, 150, 689-695.10.1016/j.proeng.2016.07.081
  2. 2. An J., Jiamin C., Wenguo Y. (2019), Measurement of spindle radial error based on target trajectory tracking, Measurement, 146,179-185.10.1016/j.measurement.2019.05.026
  3. 3. Bediz B., Gozen B.A., Korkmaz E., Ozdoganlar O. B. (2014), Dynamics of ultra-high-speed (UHS) spindles used for micromachining, International Journal of Machine Tools and Manufacture, 87, 27-38.10.1016/j.ijmachtools.2014.07.007
  4. 4. Budniak Z. (2015), Modelling and numerical analysis of assembly system, Acta mechanica et Automatica, 9(3), 145-150.10.1515/ama-2015-0024
  5. 5. Chao Xu, Jianfu Z., Pingfa F. (2014), Characteristics of stiffness and contact stress distribution of a spindle-holder taper joint under clamping and centrifugal forces, International Journal of Machine Tools & Manufacture, 82-83, 21-28.10.1016/j.ijmachtools.2014.03.006
  6. 6. Dogariu C., Bardac D. (2014), Prediction of the structural dynamic behavior of high speed turning machine spindles, Applied Mechanics and Materials, 555, 567-574.10.4028/www.scientific.net/AMM.555.567
  7. 7. Estrems M., Arizmendi M., Cumbicus W.E., López A. (2015), Measurement of clamping forces in a 3 jaw chuck through an instrumented aluminium ring, Procedia Engineering, 132, 456-463.10.1016/j.proeng.2015.12.519
  8. 8. Fedorynenko D., Sapon S., Boyko S. (2016), Accuracy of spindle units with hydrostatic bearings, Acta Mechanica et Automatica, 10(2), 117-12410.1515/ama-2016-0019
  9. 9. Fedorynenko D., Sapon S., Boyko S., Urlina A. (2017), Increasing of energy efficiency of spindles with fluid bearings, Acta Mechanica et Automatica, 11(2), 204-209.10.1515/ama-2017-0031
  10. 10. Foremny E., Schenck C., Kuhfuß B. (2016), Dynamic Behavior of an Ultra Precision Spindle used in Machining of Optical Components, Procedia CIRP, 46, 452-455.10.1016/j.procir.2016.04.039
  11. 11. Grama S.N., Mathur A., Badhe A.N. (2018), A model-based cooling strategy for motorized spindle to reduce thermal errors, International Journal of Machine Tools and Manufacture, 132, 3-16.10.1016/j.ijmachtools.2018.04.004
  12. 12. Grossi N., Scippa A., Montevecchi F. (2016), A novel experimental-numerical approach to modeling machine tool dynamics for chatter stability prediction, Journal of advanced mechanical design systems and manufacturing, 10(2), #15-00547.10.1299/jamdsm.2016jamdsm0019
  13. 13. Harris P., Linke B., Spence S. (2015), An Energy Analysis of Electric and Pneumatic Ultra-high Speed Machine Tool Spindles, Procedia CIRP, 29, 239-244.10.1016/j.procir.2015.02.046
  14. 14. Jia Q., Li B., Wei Y., Chen Y., Yuan X. (2016), Axiomatic Design Method for the Hydrostatic Spindle with Multisource Coupled Information, Procedia CIRP, 53, 252-260.10.1016/j.procir.2016.07.013
  15. 15. Kono D., Mizuno S., Muraki T., Nakaminami M. (2019), A machine tool motorized spindle with hybrid structure of steel and carbon fiber composite, CIRP Annals, 68(1), 389-392.10.1016/j.cirp.2019.04.022
  16. 16. Li, W.; Zhou, Z. X.; Xiao, H. (2015), Design and evaluation of a high-speed and precision microspindle, International journal of advanced manufacturing technology, 78(5), 997-1004.10.1007/s00170-014-6690-x
  17. 17. Liu T., Gao W., Zhang D., Tian Y. (2017), Analytical modeling for thermal errors of motorized spindle unit, International Journal of Machine Tools and Manufacture, 112, 53-70.10.1016/j.ijmachtools.2016.09.008
  18. 18. Longfei Z., Jun Z., Chao Z. (2019), A new method for field dynamic balancing of rigid motorized spindles based on real-time position data of CNC machine tools, International journal of advanced manufacturing technology, 102 (5-8), special edition, 1181-1191.10.1007/s00170-018-2953-2
  19. 19. Matsubara A., Tsujimoto S., Kono D. (2015), Evaluation of dynamic stiffness of machine tool spindle by non-contact excitation tests, CIRP Annals, 1.V. 64(1), 365-368.10.1016/j.cirp.2015.04.101
  20. 20. Mori K., Bergmann B., Kono D., Denkena B., Matsubara A. (2019), Energy efficiency improvement of machine tool spindle cooling system with on–off control, CIRP Journal of Manufacturing Science and Technology, 25, 14-21.10.1016/j.cirpj.2019.04.003
  21. 21. Postel M., Aslan D., Wegener K., Altintas Y. (2019), Monitoring of vibrations and cutting forces with spindle mounted vibration sensors, CIRP Annals, 68(1), 413-416.10.1016/j.cirp.2019.03.019
  22. 22. Prydalnyi B. (2020), Characteristics of electromechanical clamping mechanism with asynchronous electric motor, International Conference Mechatronic Systems and Materials (MSM), 1-5.10.1109/MSM49833.2020.9202186
  23. 23. Rabréau C., Ritou M., Le Loch S., Furet B. (2017), Investigation of the Evolution of Modal Behavior of HSM Spindle at High Speed, Procedia CIRP, 58, 405-410.10.1016/j.procir.2017.03.243
  24. 24. Ritou M., Rabréau C., Le Loch S., Furet B., Dumur D. (2018), Influence of spindle condition on the dynamic behavior, CIRP Annals, 67(1), 419-422.10.1016/j.cirp.2018.03.007
  25. 25. Shaoke W., Jun H., Fei D. (2019), Modelling and characteristic investigation of spindle-holder assembly under clamping and centrifugal forces, Journal of mechanical science and technology, 33(5), 2397-2405.10.1007/s12206-019-0438-3
  26. 26. Thorenz B., Westermann H.-H., Kafara M., Nützel M., Steinhilper R. (2018), Evaluation of the influence of different clamping chuck types on energy consumption, tool wear and surface qualities in milling operations, Procedia Manufacturing, 21, 575-582.10.1016/j.promfg.2018.02.158
  27. 27. Wang H.J. (2013), Study of dynamics characteristics for precision motor spindle system, Advanced materials research, 819, 389-392.10.4028/www.scientific.net/AMR.819.389
  28. 28. Xu C., Zhang J., Feng P., Yu D., Wu Z. (2014), Characteristics of stiffness and contact stress distribution of a spindle–holder taper joint under clamping and centrifugal forces, International Journal of Machine Tools and Manufacture, 82–83, 21-28.10.1016/j.ijmachtools.2014.03.006
  29. 29. Yadav M.H., Mohite S.S. (2018), Controlling deformations of thin-walled Al 6061-T6 components by adaptive clamping, Procedia Manufacturing, 20, 509-516.10.1016/j.promfg.2018.02.076
  30. 30. Yang Y., Zhang W.H., Ma Y.C., Wan M. (2015), Generalized method for the analysis of bending, torsional and axial receptances of tool–holder–spindle assembly, International Journal of Machine Tools and Manufacture, 99, 48-67.10.1016/j.ijmachtools.2015.08.004
  31. 31. Yuan S.M. (2014), The analysis of static and dynamic characteristics of motorized high-speed spindle based on sensitivity analysis of fem model, Applied mechanics and materials, 43, 376-381.10.4028/www.scientific.net/AMM.43.376
  32. 32. Zabielski R., Trochimczuk R. (2011), Wybrane problemy projektowania wysokoobrotowych elektrowrzecion frezarskich o niestandardowym łożyskowaniu, Acta Mechanica et Automatica, 5(1), 131-136.
  33. 33. Zhang S., Yu J., To S., Xiong Z. (2018), A theoretical and experimental study of spindle imbalance induced forced vibration and its effect on surface generation in diamond turning, International Journal of Machine Tools and Manufacture, 133, 61-71.10.1016/j.ijmachtools.2018.06.002
DOI: https://doi.org/10.2478/ama-2021-0007 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 47 - 52
Submitted on: Oct 7, 2019
Accepted on: May 10, 2021
Published on: May 15, 2021
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Borys Prydalnyi, Heorhiy Sulym, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.