Have a personal or library account? Click to login
Ideal Rectifier Bridge Converting the Harvested Energy of Vibrations Into Electric Energy to Power an MR Damper Cover

Ideal Rectifier Bridge Converting the Harvested Energy of Vibrations Into Electric Energy to Power an MR Damper

Open Access
|Mar 2021

References

  1. 1. Balato M., Costanzo L., Vitelli M. (2017), Resonant electromagnetic vibration harvesters: Determination of the electric circuit parameters and simplified closed-form analysis for the identification of the optimal diode bridge rectifier DC load. International Journal of Electrical Power and Energy Systems 84, 111-123.10.1016/j.ijepes.2016.05.004
  2. 2. Chytil J. (2014), Practical realization of ideal diode full-wave rectifiers, Informatics Control Measurement in Economy and Environment Protection, vol.4, no.4, 81-84.
  3. 3. Grzybek D., Micek P. (2017), Piezoelectric beam generator based on MFC as a self-powered vibration sensor, Sensors and Actuators A: Physical, 267, 417-423.10.1016/j.sna.2017.10.053
  4. 4. Jastrzębski Ł., Sapinski B. (2017), Electrical interface for an MR damper-based vibration reduction system with energy harvesting capability. Proceedings of 18th International Carpathian Control Conference ICCC 2017.10.1109/CarpathianCC.2017.7970395
  5. 5. Maiorca F., Giusa F., Trigona C., Ando B., Bulsara A. R., Baglio S. (2013), Diode-less mechanical H-bridge rectifier for “zero threshold” vibration energy harvesters, Sensors and Actuators A: Physical, 201, 246-253.10.1016/j.sna.2013.07.021
  6. 6. Safaei M., Sodano H. A., Steven R Anton S. R. (2019), A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008–2018), Smart Materials and Structures, 28, 113001.10.1088/1361-665X/ab36e4
  7. 7. Sapiński B. (2010), Vibration power generator for a linear MR damper, Smart Materials and Structures, 19, 105012.10.1088/0964-1726/19/10/105012
  8. 8. Sapiński B. (2011), Experimental study of a self-powered and sensing MR-damper-based vibration control system, Smart Materials and Structures, 20, 105007.10.1088/0964-1726/20/10/105007
  9. 9. Sapiński B. (2014), Energy-harvesting linear MR damper: prototyping and testing, Smart Materials and Structures, 23, 035021.10.1088/0964-1726/23/3/035021
  10. 10. Sapiński B., Jastrzębski Ł., Rosół M. (2012), Power amplifier supporting MR fluid-based actuators, Proceedings of 13th International Carpathian Control Conference ICCC 2012, 612–616.10.1109/CarpathianCC.2012.6228719
  11. 11. Sapiński B., Snamina J., Jastrzębski Ł., Staśkiewicz A. (2010), Laboratory stand for testing of self-powered vibration reduction systems, Journal of Theoretical and Applied Mechanics, Vol. 49, No. 4.
  12. 12. Selevaraj K. (2019), Basics of Ideal Diodes, Texas Instruments, http://www.ti.com/lit/an/slvae57/slvae57.pdf
  13. 13. Snamina J., Orkisz P. (2014), Energy Harvesting from Vibrations of a Two-Degree-of-Freedom Mechanical System, Acta Physica Polonica A, vol. 125, no. 4A, 174-178.
  14. 14. Sung K. G., Choi S. B. (2008), Effect of an electromagnetically optimized magnetorheological damper on vehicle suspension control performance. Proc. of the Institution Mechanical Engineers Part D Journal of Automobile Engineering.10.1243/09544070JAUTO901
  15. 15. Wang D. H., Liao W. H. (2009a), Semi-active suspension systems for railway vehicles using magnetorheological dampers. Part I: System integration and modelling, Vehicle System Dynamics.10.1080/00423110802538328
  16. 16. Wang D. H., Liao W. H. (2009b), Semi-active suspension systems for railway vehicles using magnetorheological dampers. Part II: Simulation and analysis, Vehicle System Dynamics.10.1080/00423110802538336
  17. 17. Lord Corpotation (2020), MR damper, RD-8048-1, Technical documentation, www.lord.com
  18. 18. KiCad EDA (2020), User manual, https://www.kicad-pcb.org/
  19. 19. Analog Devices (2020), LTSpice, User manual, https://www.analog.com/
  20. 20. Infineon (2020), IRFH5007, Technical documentation, https://www.infineon.com
  21. 21. RHOM (2020), RBR2MM60C, Technical documentation, https://www.rohm.com/
DOI: https://doi.org/10.2478/ama-2020-0028 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 198 - 205
Submitted on: Nov 3, 2020
Accepted on: Jan 22, 2020
Published on: Mar 8, 2021
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Bogdan Sapiński, Łukasz Jastrzębski, Arkadiusz Kozieł, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.