Have a personal or library account? Click to login
The Impact of Troposphere Correction for Designation of the Ellipsoidal Height of Aircraft at Approach to Landing Procedure Cover

The Impact of Troposphere Correction for Designation of the Ellipsoidal Height of Aircraft at Approach to Landing Procedure

Open Access
|Jan 2020

References

  1. 1. Abdelfatah M. A, Mousa A.E., El-Fiky G. S. (2018), Assessment oftropospheric delay mapping function models in Egypt: Using PTD database model, NRIAG Journalof Astronomy and Geophysics, 7(1), 47–51.10.1016/j.nrjag.2017.12.001
  2. 2. Auh S-C., Lee S-B. (2018), Analysis of the Effect of Tropospheric Delay on Orthometric Height Determination at High Mountain, KSCE Journal of Civil Engineering, 22, 4573.10.1007/s12205-018-0402-2
  3. 3. Boon F.J.G., de Jonge P.J., Tiberius C.C.J.M. (1997), Precise aircraft positioning by fast ambiguity resolution using improved troposphere modeling, Proceedings of the 10th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1997), Kansas City, MO, 1877–1884.
  4. 4. Collins J.P. (1999), Assessment and Development of a Tropospheric Delay Model for Aircraft Users of the Global Positioning System, University of New Brunswick, Department of Geodesy and Geomatics Engineering, Technical Report no. 203.
  5. 5. Ćwiklak J., Jafernik H. (2010), The monitoring system for aircraft and vehicles of public order services based on GNSS, Annual of Navigation, 16, 15–24.
  6. 6. Guilbert A. (2016), Optimal GPS/GALILEO GBAS methodologies with an application to troposphere, PhD thesis, Institut National Polytechnique de Toulouse (INP Toulouse).
  7. 7. Hofmann-Wellenhof B., Lichtenegger H., Wasle E. (2008), GNSS – Global Navigation Satellite Systems: GPS, GLONASS, Galileo and more, SpringerWienNewYork, Wien, Austria.
  8. 8. International Civil Aviation Organization (2006), ICAO Standards and Recommended Practices (SARPS). Annex 10, Volume I (Radionavigation aids), Polish version available at website: http://www.ulc.gov.pl/pl/prawo/prawomi%C4%99dzynarodowe/206-konwencje, current on: 15.10.2018.
  9. 9. Krasuski K., Jafernik H. (2017), Determination troposphere delay using GPS sensor in air transport, Autobusy: technika, eksploatacja, systemy transportowe, 18(6), 826–829 (in Polish).
  10. 10. Krasuski K., Wierzbicki D. (2016), The impact of atmosphere delays in processing of aircraft’s coordinates determination, Journal of KONES, 23(2), 209–214.10.5604/12314005.1213594
  11. Kutsenko O., Ilnytska S., Konin V. (2018), Investigation of the the residual tropospheric error influence on the coordinate determination accuracy in a satellite landing system, Aviation, 22(4), 156–165.10.3846/aviation.2018.7082
  12. 12. Lkan R. M., Ozulu İ. M., Ilci V. (2016), Precise Point Positioning (PPP) Technique versus Network-RTK GNSS, FIG Working Week 2016, Christchurch, New Zealand, 1–10.
  13. 13. Neri P. (2011), Use of GNSS signals and their augmentations for Civil Aviation navigation during Approaches with Vertical Guidance and Precision Approaches, PhD thesis, Institut National Polytechnique de Toulouse (INP Toulouse).
  14. 14. Parameswaran K., Saha K., Raju C.S. (2008), Development of a regional tropospheric delay model for GPS-based navigation with emphasis to the Indian Region, Radio Science, 43, RS400710.1029/2007RS003782
  15. 15. Sanz Subirana J., Juan Zornoza J. M., Hernandez-Pajares M. (2013), GNSS Data Processing, Volume I: Fundamentals and Algorithms, Publisher: ESA Communications, ESTEC, Noordwijk, Netherlands.
  16. 16. Savchuk S., Khoptar A. (2018), Estimation of Slant Tropospheric Delays from GNSS Observations with Using Precise Point Positioning Method, Annual of Navigation, 25, 253–266.10.1515/aon-2018-0017
  17. 17. Schaer S. (1999), Mapping and predicting the Earth’s ionosphere using Global Positioning System, PhD thesis, Neunundfunfzigster Band volume 59, Zurych.
  18. 18. Sultana Q., Sarma A.D., Javeed M.Q. (2013), Estimation of tropospheric time delay for Indian LAAS, 2013 International Conference on Emerging Trends in VLSI, Embedded System, Nano Electronics and Telecommunication System (ICEVENT), Tiruvannamalai, 1–5.10.1109/ICEVENT.2013.6496529
  19. 19. Takasu T. (2013), RTKLIB ver. 2.4.3 Manual, RTKLIB: An Open Source Program Package for GNSS Positioning, Paper available at website: http://www.rtklib.com/prog/manual_2.4.2.pdf, current on 2019.
  20. 20. Uemo M., Hoshinoo K., Matsunaga K., Kawai M., Nakao H., Langley R., Bisnath S. (2001), Assessment of atmospheric delay correction models for the Japanese MSAS; Proceedings of the ION GPS 2001; Salt Lake, UT, USA.
  21. 21. Vyas M. R., Lim S., Rizos C. (2011), Analysis of Zenith Path Delay in dynamically changing environment, International Global Navigation Satellite Systems Society IGNSS Symposium 2011, University of New South Wales, Sydney, NSW, Australia, 1–8.
  22. 22. Wang Z., Xin P., Li R., Wang S. (2017), A Method to Reduce Non-Nominal Troposphere Error, Sensors, 17, 1751.10.3390/s17081751557949228758983
DOI: https://doi.org/10.2478/ama-2019-0031 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 233 - 237
Submitted on: Oct 3, 2019
Accepted on: Dec 12, 2019
Published on: Jan 30, 2020
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Kamil Krasuski, Stepan Savchuk, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.