References
- 1. Chengye L., Fengyan Y., Kejun J. (2011), Design and finite element analysis of magnetic circuit for disk MRF brake, Advanced Materials Research, 181-182, 22–527.10.4028/www.scientific.net/AMR.181-182.522
- 2. Farjoud A., Vahdati N., Fah Y. (2008), MR-fluid yield surface determination in disc-type MR rotary brakes, Smart Materials and Structures, 17(3), 1–8.10.1088/0964-1726/17/3/035021
- 3. Farjoud A., Craft M., Burke W., Ahmadian M. (2011), Experimental investigation of MR squeeze mounts, Journal of Intelligent Material Systems and Structures, 22, 1645–1652.10.1177/1045389X11411225
- 4. Guo C, Gong X, Xuan S, Zong L and Peng C. (2012), Normal forces of magnetorheological fluids under oscillatory shear, J. Magn. Magn. Mater, 324, 1218.
- Guo C., Gong X., Xuan S., Yan Q. and Ruan X. (2013), Squeeze Squeeze behavior of magnetorheological fluids under constant volume and uniform magnetic field, Smart Materials and Structures, 22(4), 045020.10.1088/0964-1726/22/4/045020
- 6. Gstöttenbauer N., Kainz A, Manhartsgruber B. (2008), Experimental and numerical studies of squeeze mode behaviour of magnetic fluid, Proc. IMechE Part C, J. Mechanical Engineering Science, 222(12), 2395-240710.1243/09544062JMES1129
- 7. Guldbakke J. M., Hesselbach, J. (2006), Development of bearings and a damper based on magnetically controllable fluids, J. Phys., Condens. Matter, 18(38), 2959–2972.10.1088/0953-8984/18/38/S29
- 8. Gołdasz J., Sapiński B. (2011), Model of a squeeze mode magnetorheological mount, Solid State Phenomena, 177, 116–124.10.4028/www.scientific.net/SSP.177.116
- 9. Goncalves F.D., Carlson J.D. (2009) An alternate operation mode for MR fluids – magnetic gradient pinch, Journal of Physics, Conference Series, 149(1), 012050.10.1088/1742-6596/149/1/012050
- 10. Horak W. Sapiński B., Szczęch M. (2017), Analysis of force in MR fluids during oscillatory compression squeeze, Acta Mechanica et Automatica, 11 (1), 64–68.10.1515/ama-2017-0010
- 11. Horak W. (2018) Modeling of magnetorheological fluid in quasi-static squeeze flow mod, Smart Materials and Structures, 27 (6), 065022.10.1088/1361-665X/aab7c7
- 12. Kubík M., Macháček O., Strecker Z., Roupec, J, Mazůrek I. (2017), Design and testing of magnetorheological valve with fast force response time and great dynamic force range, Smart Material and Structures, 26(4), 047002.10.1088/1361-665X/aa6066
- 13. Kuzhir P., López-López M. T., Vertelov G., Pradille C., Bossis G. (2008), Oscillatory squeeze flow of suspensions of magnetic polymerized chains, J. Phys., Condens. Matter, 20204132.10.1088/0953-8984/20/20/20413221694261
- 14. Laun H.M., Gabriel C., Schmidt G. (2008), Primary and secondary normal stress differences of a magnetorheological fluid (MRF) up to magnetic flux densities of 1 T, Journal of Non-Newtonian Fluid Mechanic, 148(1), 47-56.10.1016/j.jnnfm.2007.04.019
- 15. Liu W., Luo Y., Yang B., Lu W. (2019), Design and Mechanical Model Analysis of Magnetorheological Fluid Damper, American Journal of Mechanics and Applications, 4(1), 15-19.10.11648/j.ajma.20160401.13
- 16. Mazlan S. (2007), The performance of magnetorheological fluid in squeeze mode, Smart Materials and Structures, 16(5), 1678-1682.10.1088/0964-1726/16/5/021
- 17. Szczęch M., Horak W. (2018), Analysis of the magnetic field distribution in the parallel plate rheometer measuring system, Tribologia, 49(2),117-122.10.5604/01.3001.0012.6984
- 18. Tao R. (2011), Super-strong magnetorheological fluids, Journal of Physics: Condensed Matter, 13(50), 979–999.10.1088/0953-8984/13/50/202
- 19. Wang N., Liu X., Zhang X., (2019), Squeeze-Strengthening Effect of Silicone Oil-Based Magnetorheological Fluid with Nanometer Fe3O4 Addition in High-Torque Magnetorheological Brake, Journal of Nanoscience and Nanotechnology, 1, 19(5), 2633-2639.
- 20. Zhang X. J., Farjud A., Ahmadian M., Guo K. H., Craft M. (2011), Dynamic Testing and Modelling of an MR Squeeze Mount, Journal of Intelligent Material Systems and Structures, 22, 1717-1728.10.1177/1045389X11424217