Have a personal or library account? Click to login
Design of The Vibrostabilisation Stand For Reducing Residual Stresses in Discs Used In The Construction of Multi-Plate Clutches and Brakes Cover

Design of The Vibrostabilisation Stand For Reducing Residual Stresses in Discs Used In The Construction of Multi-Plate Clutches and Brakes

Open Access
|Apr 2019

References

  1. 1. Adamczyk J. (1993), Theoretical metallurgy. Plastic deformation, strengthening and cracking, 3, Publisher of the Silesian University of Technology, Gliwice (in Polish).
  2. 2. Adamski W. (2015), Impact of Modern Manufacturing Technologies at Aircraft Design, Mechanik, nr 12, 1-5 (in Polish).10.17814/mechanik.2015.12.588
  3. 3. Almer J.D., Cohen J.B., Moran B. (2000), The effects of residual macrostresses and microstresses on fatigue crack initiation, Materials Science and Engineering, A284, 268-279.10.1016/S0921-5093(99)00779-0
  4. 4. Antonyuk V. (2004), Dynamic stabilisation of geometrical parametres of details with alternating, UP “Technoprint” Minsk.
  5. 5. Antonyuk V., Jaroszewicz J., Radziszewski L., Dragun Ł. (2016), Theoretical stress analysis-based improvement of friction clutch disc manufacturing process, Czasopismo Techniczne. Mechanika, Politechnika Krakowska, 113(4-M), 73-79.
  6. 6. Antonyuk V., Sandomirskij S., Jaroszewicz J. (2017), Testing the possibility of estimation of residual stress based on gradient of magnetic field, Przegląd Mechaniczny, 2, 9-13 (in Polish).
  7. 7. Bernstein, S.A., Kieropian, K.K. (1960), Calculation of frequency of bar systems by means of spectral function, Goststrojtechizdat, 281, Moscow (in Russian).
  8. 8. Chukkan J.R, Wu G., Fitzpatrick M.E., Eren E., Zhang X., Kelleher J. (2018), Residual stress redistribution during elastic shake down in welded plates, MATEC Web of Conferences, FATIGUE 2018, 165, 21004, 1–6.10.1051/matecconf/201816521004
  9. 9. Ghasri-Khouzani M., Pengb H., Roggec R., Attardod R., Ostiguyd P., Neidige J., Billof R., Hoelzleg D., Shankara M.R. (2017), Experimental measurement of residual stress and distortion in additively manufactured stainless steel components with various dimensions, Materials Science & Engineering, A707, 689–700.10.1016/j.msea.2017.09.108
  10. 10. Gupalov B.A. (2013), Technology and equipment for friction disk vibratory dressing, Wiestnik IrGTU, 9(80), 57-63 (in Russian).
  11. 11. Gupalov B.A., Zakuraev W.W. (2011), Kinetics of geometric parameters changes of friction discs during vibratory processing, Wiestnik Nauki Sibri, 1(1), 682-685 (in Russian).
  12. 12. Hałas W. (2010), Study of the influence of residual stresses on the accuracy of shaft production. Dissertation, Publisher of the Lublin University of Technology, Lublin (in Polish).
  13. 13. Jaroszewicz J., Zoryj L. (2005), Methods for analyzing axisymmetric oscillations of circular plates using the Cauchy influence function method, Rozprawy Naukowe Politechniki Białostockiej, 124, Białystok.
  14. 14. Khan N., Gangele A. (2016), Residual Stress Measurement Techniques: A Review, International Journal of Research in Engineering and Applied Sciences, 6(4), 151-157.
  15. 15. Kwofie S. (2011), Description and simulation of cyclic stress-strain response during residual stress relaxation under cyclic load, Procedia Engineering, 10, 293–298.10.1016/j.proeng.2011.04.051
  16. 16. Meng L., Atli M., He N. (2017), Measurement of equivalent residual stresses generated by milling andcorresponding deformation prediction, Precision Engineering, 50, 160-170.10.1016/j.precisioneng.2017.05.003
  17. 17. Mughrabi H. (2013), Microstructural fatigue mechanisms: Cyclic slip irreversibility, crack initiation, non-linear elastic damage analysis, International Journal of Fatigue, 57, 2–8.10.1016/j.ijfatigue.2012.06.007
  18. 18. Pedrosa P.D., Rebello J.M.A., Fonseca M.P.C. (2011), Residual stress state behaviour under fatigue loading in duplex stainless steel, The Journal of Strain Analysis for Engineering Design, 46(4), 298–303.10.1177/0309324711400499
  19. 19. Roberson R.E. (1951), Vibrations of clamped circular plate carring concentrated mass, Journal Applied Mechanics, 18, 4, 349-352.10.1115/1.4010348
  20. 20. Rossini N.S., Dassisti M., Benyounis K.Y., Olabi A.G. (2012), Methods of measuring residual stresses in components, Materials and Design, 35, 572–588.10.1016/j.matdes.2011.08.022
  21. 21. Salvati E., Korsunsky A.M. (2017), An analysis of macro- and micro-scale residual stresses of Type I, II and III using FIB-DIC micro-ring-core milling and crystal plasticity FE modelling. International Journal of Plasticity, 98, 123-138.10.1016/j.ijplas.2017.07.004
  22. 22. Sangid M.D. (2013), The physics of fatigue crack initiation, International Journal of Fatigue, 57, 58–72.10.1016/j.ijfatigue.2012.10.009
  23. 23. Schajer G.S. (2013), Practical residual stress measurement methods, John Wiley & Sons Ltd., London.10.1002/9781118402832
  24. 24. Świć A. (2009), The technology of processing shafts with low stiffness, Publisher of the Lublin University of Technology Lublin (in Polish).
  25. 25. Uhl T., Panuszka R. (1983), Determination of resonant frequencies of continuous mechanical systems on the example of a beam and an oscillating plate, Archiwum Budowy Maszyn, 1-2, 111-123 (in Polish).
  26. 26. Vardanjani M.J., Ghayour M., Homami R.M. (2016), Analysis of the vibrational stress relief for reducing the residual stresses caused by machining, Experimental Techniques, 40(2), 705–713.10.1007/s40799-016-0071-3
  27. 27. Vourna P., Ktena A., Tsakiridis P.E., Hristoforou E. (2015), A novel approach of accurately evaluating residual stress and microstructure of welded electrical steels, NDT & E International, 71, 33–42.10.1016/j.ndteint.2014.09.011
  28. 28. Wang Q., Liu X., Yan Z., Dong Z., Yan D. (2017), On the mechanism of residual stresses relaxation in welded joints under cyclic loading, International Journal of Fatigue, 105, 43–59.10.1016/j.ijfatigue.2017.08.016
  29. 29. Wesołowski K. (1981), Metallurgy and heat treatment, WNT, Warsaw (in Polish).
  30. 30. Zijlstra G., Groen M., Post J., Ocelík V., De Hosson J.Th.M. (2016), On the role of the residual stress state in product manufacturing, Materials & Design, 105, 375–380.10.1016/j.matdes.2016.05.085
DOI: https://doi.org/10.2478/ama-2019-0006 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 37 - 44
Submitted on: Mar 17, 2018
|
Accepted on: Mar 18, 2019
|
Published on: Apr 18, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Jerzy Jaroszewicz, Krzysztof Łukaszewicz, Vladimir Antonyuk, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.