Have a personal or library account? Click to login
Position/Force Control of Manipulator in Contact with Flexible Environment Cover

Position/Force Control of Manipulator in Contact with Flexible Environment

By: Piotr Gierlak  
Open Access
|Apr 2019

References

  1. 1. Barata J.C.A., Hussein M.S. (2012), The Moore–Penrose pseudoinverse: A tutorial review of the theory, Brazilian Journal of Physics, 42(1-2), 146–165.10.1007/s13538-011-0052-z
  2. 2. Birglen L., Schlicht T. (2018), A statistical review of industrial robotic grippers, Robotics and Computer-Integrated Manufacturing, 49, 88–97.10.1016/j.rcim.2017.05.007
  3. 3. Burghardt A., Kurc K., Szybicki D., Muszyńska M., Nawrocki J. (2017a), Software for the robot-operated inspection station for engine guide vanes taking into consideration the geometric variability of parts, Tehnicki Vjesnik-Technical Gazette, 24(2), 349–353.10.17559/TV-20160820142224
  4. 4. Burghardt A., Szybicki D., Kurc K., Muszyńska M., Mucha J. (2017b), Experimental Study of Inconel 718 Surface Treatment by Edge Robotic Deburring with Force Control, Strength Mater, 49(4), 594–604.10.1007/s11223-017-9903-3
  5. 5. Canudas de Wit C.A., Siciliano B., Bastin G. (Eds.) (1996), Theory of robot control, New York, Springer.10.1007/978-1-4471-1501-4
  6. 6. Capisani L. M., Ferrara A. (2012), Trajectory planning and second-order sliding mode motion/interaction control for robot manipulators in unknown environments, IEEE Transactions on Industrial Electronics, 59(8), 3189–3198.10.1109/TIE.2011.2160510
  7. 7. Denkena B., Bergmann B., Lepper T. (2017), Design and optimization of a machining robot, Procedia Manufacturing, 14, 89–96.10.1016/j.promfg.2017.11.010
  8. 8. Duan J., Gan Y., Chen M., Dai X. (2018), Adaptive variable impedance control for dynamic contact force tracking in uncertain environment, Robotics and Autonomous Systems, 102, 54–65.10.1016/j.robot.2018.01.009
  9. 9. Galushkin A. I. (2007). Neural networks theory, Springer Science & Business Media.
  10. 10. Gierlak P. (2012), Hybrid Position/Force Control of the SCORBOT-ER 4pc Manipulator with Neural Compensation of Nonlinearities, in: Rutkowski L., Korytkowski M., Scherer R., Tadeusiewicz R., Zadeh L.A., Zurada J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2012. Lecture Notes in Computer Science, 7268, 433–441, Springer, Berlin, Heidelberg.10.1007/978-3-642-29350-4_52
  11. 11. Gierlak P. (2014), Hybrid position/force control in robotised machining, Solid State Phenomena, 210, 192–199.10.4028/www.scientific.net/SSP.210.192
  12. 12. Gierlak P. (2018), Combined strategy for control of interaction force between manipulator and flexible environment, Journal of Control Engineering and Applied Informatics, 20(2), 64–75.
  13. 13. Gierlak P., Szuster M. (2017), Adaptive position/force control for robot manipulator in contact with a flexible environment, Robotics and Autonomous Systems, 95, 80–101.10.1016/j.robot.2017.05.015
  14. 14. Gracia L., Solanes J.E., Muñoz-Benavent P., Miro J.V., Perez-Vidal C., Tornero J. (2018), Adaptive Sliding Mode Control for Robotic Surface Treatment Using Force Feedback, Mechatronics, 52, 102–118.10.1016/j.mechatronics.2018.04.008
  15. 15. Hashemi S.M., Gürcüoğlu U., Werner H. (2013), Interaction control of an industrial manipulator using LPV techniques, Mechatronics, 23(6), 689–699.10.1016/j.mechatronics.2013.07.002
  16. 16. Hendzel Z., Burghardt A., Gierlak P., Szuster M. (2014), Conventional and fuzzy force control in robotised machining, Solid State Phenomena, 210, 178–185.10.4028/www.scientific.net/SSP.210.178
  17. 17. Hertz J., Krogh A., Palmer R.G. (1991), Introduction to the theory of neural computation, Boston, Addison-Wesley Longman Publishing Co.10.1063/1.2810360
  18. 18. Iglesias I., Sebastián M.A., Are, J.E. (2015), Overview of the state of robotic machining: Current situation and future potential, Procedia engineering, 132, 911–917.10.1016/j.proeng.2015.12.577
  19. 19. Jafari A., Ryu J.H. (2016), Independent force and position control for cooperating manipulators handling an unknown object and interacting with an unknown environment, Journal of the Franklin Institute, 353(4), 857–875.10.1016/j.jfranklin.2015.12.010
  20. 20. Kumar N., Panwar V., Sukavanam N., Sharma S.P., Borm J.-H. (2011), Neural network based hybrid force/position control for robot manipulators, International Journal of Precision Engineering and Manufacturing, 12(3), 419–426.10.1007/s12541-011-0054-3
  21. 21. Lewis F.L., Liu K., Yesildirek A. (1995), Neural Net Robot Controller with Guaranteed Tracking Performance, IEEE Transactions on Neural Networks, 6(3), 701–715.10.1109/72.37797518263355
  22. 22. Lotz M., Bruhm H., Czinki A. (2014), An new force control strategy improving the force control capabilities of standard industrial robots, Journal of Mechanics Engineering and Automation, Vol. 4, 276–283.
  23. 23. Mendes N., Neto P. (2015), Indirect adaptive fuzzy control for industrial robots: a solution for contact applications, Expert Systems with Applications, 4 (22), 8929–8935.10.1016/j.eswa.2015.07.047
  24. 24. Narendra K., Annaswamy A.M. (1987), A new adaptive law for robust adaptation without persistent excitation, IEEE Transactions on Automatic Control, 32(2), 134–145.10.1109/TAC.1987.1104543
  25. 25. Pao Y.-H., Park G.-H., Sobajic D.J. (1994), Learning and generalization characteristics of the random vector functional-link net, Neurocomputing, 6(2), 163–180.10.1016/0925-2312(94)90053-1
  26. 26. Pliego-Jiménez J., Arteaga-Pérez M.A. (2015), Adaptive position/force control for robot manipulators in contact with a rigid surface with uncertain parameters, European Journal of Control, 22, 1–12.10.1016/j.ejcon.2015.01.003
  27. 27. Polycarpou M.M., Ioannu P.A. (1991), Identification and control using neural network models: design and stability analysis, California, University of Southern California.
  28. 28. Ravandi A. K., Khanmirza E., Daneshjou K. (2018), Hybrid force/position control of robotic arms manipulating in uncertain environments based on adaptive fuzzy sliding mode control. Applied Soft Computing, 70, 864–874.10.1016/j.asoc.2018.05.048
  29. 29. Tian F., Lv C., Li Z., Liu G. (2016), Modeling and control of robotic automatic polishing for curved surfaces, CIRP Journal of Manufacturing Science and Technology, 14, 55–64.10.1016/j.cirpj.2016.05.010
  30. 30. Vukobratovič M., Ekalo Y., Rodič A. (2002), How to Apply Hybrid Position/Force Control to Robots Interacting with Dynamic Environment, In: Bianchi G., Guinot J.-C., Rzymkowski C. (Eds.) Romansy, 14, 249–258, Vienna.10.1007/978-3-7091-2552-6_27
  31. 31. Zhu D., Luo S., Yang L., Chen W., Yan S., Ding H. (2015), On energetic assessment of cutting mechanisms in robot-assisted belt grinding of titanium alloys, Tribology International, 90, 55–59.10.1016/j.triboint.2015.04.004
  32. 32. Żylski W., Gierlak P. (2010), Verification of Multilayer Neural-Net Controller in Manipulator Tracking Control, Solid State Phenomena, 164, 99–104.10.4028/www.scientific.net/SSP.164.99
DOI: https://doi.org/10.2478/ama-2019-0003 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 16 - 22
Submitted on: Jun 26, 2018
Accepted on: Mar 7, 2019
Published on: Apr 18, 2019
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Piotr Gierlak, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.