Have a personal or library account? Click to login
Octenidine Dihydrochloride – Antimicrobial Activity, Adaptation and Clinical Application Cover

Octenidine Dihydrochloride – Antimicrobial Activity, Adaptation and Clinical Application

Open Access
|Sep 2025

References

  1. <bold>Alvarez-Marin R, Aires-de-Sousa M, Nordmann P, Kieffer N, Poirel L</bold>. Antimicrobial activity of octenidine against multidrug-resistant Gram-negative pathogens. Eur J Clin Microbiol Infect Dis. 2017 Dec; 36(12), 2379–2383 <a href="https://doi.org/10.1007/s10096-017-3070-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10096-017-3070-0</a>
  2. <bold>Amaral GCLS, Hassan MA, Sloniak MC, Pannuti CM, Romito GA, Villar CC</bold>. Effects of antimicrobial mouthwashes on the human oral microbiome: Systematic review of controlled clinical trials. Int J Dent Hyg. 2023 Feb 21(1):128–140. <a href="https://doi.org/10.1111/idh.12617" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/idh.12617</a>
  3. <bold>Barreto R, Barrois B, Lambert J, Malhotra-Kumar S, Santos-Fernandes V, Monstrey S</bold>. Addressing the challenges in antisepsis: focus on povidone iodine. Int J Antimicrob Agents. 2020 Sep; 56(3):106064. <a href="https://doi.org/10.1016/j.ijantimicag.2020.106064" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijantimicag.2020.106064</a>
  4. <bold>Bharadwaj A, Rastogi A, Pandey S, Gupta S, Sohal JS</bold>. Multidrug-Resistant Bacteria: Their Mechanism of Action and Prophylaxis. Biomed Res Int. 2022 Sep; 5419874. <a href="https://doi.org/10.1155/2022/5419874" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1155/2022/5419874</a>
  5. <bold>Biermann CD, Kribs A, Roth B, Tantcheva-Poor I</bold>. Use and Cutaneous Side Effects of Skin Antiseptics in Extremely Low Birth Weight Infants - A Retrospective Survey of the German NICUs. Klin Padiatr. 2016 Jul; 228(4):208–212. <a href="https://doi.org/10.1055/s-0042-104122" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1055/s-0042-104122</a>
  6. <bold>Bigliardi PL, Alsagoff SAL, El-Kafrawi HY, Pyon J-K, Wa CTC, Villa MA</bold>. Povidone iodine in wound healing: A review of current concepts and practices. International Journal of Surgery. 2017 Aug; 44:260–268. <a href="https://doi.org/10.1016/j.ijsu.2017.06.073" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijsu.2017.06.073</a>
  7. <bold>Bock LJ, Ferguson PM, Clarke M, Pumpitakkul V, Wand ME, Fady P-E, Allison L, Fleck RA, Shepherd MJ, Mason AJ, et al</bold>. Pseudomonas aeruginosa adapts to octenidine via a combination of efflux and membrane remodelling. Commun Biol. 2021 Sep; 4(1):1058. <a href="https://doi.org/10.1038/s42003-021-02566-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s42003-021-02566-4</a>
  8. <bold>Bonomo RA, Perez F, Hujer AM, Hujer KM, Vila AJ</bold>. The Real Crisis in Antimicrobial Resistance: Failure to Anticipate and Respond. Clinical Infectious Diseases. 2024 Jun; 78(6):1429–1433. <a href="https://doi.org/10.1093/cid/ciad758" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/cid/ciad758</a>
  9. <bold>Brookes ZLS, McCullough M, Kumar P, McGrath C</bold>. Mouthwashes: Implications for Practice. Int Dent J. 2023 Nov; 73 Suppl 2(Suppl 2):S98–S101. <a href="https://doi.org/10.1016/j.identj.2023.08.013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.identj.2023.08.013</a>
  10. <bold>Calow T, Oberle K, Bruckner-Tuderman L, Jakob T, Schumann H</bold>. Contact dermatitis due to use of Octenisept in wound care. J Dtsch Dermatol Ges. 2009 Sep; 7(9):759–765. <a href="https://doi.org/10.1111/j.1610-0387.2009.07035.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1610-0387.2009.07035.x</a>
  11. <bold>Conceição T, de Lencastre H, Aires-de-Sousa M</bold>. Bactericidal activity of octenidine against Staphylococcus aureus harbouring genes encoding multidrug resistance efflux pumps. J Glob Antimicrob Resist. 2019 Mar; 16:239–241. <a href="https://doi.org/10.1016/j." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.</a> jgar.2019.01.033
  12. <bold>Contaldo M, D’Ambrosio F, Ferraro GA, Di Stasio D, Di Palo MP, Serpico R, Simeone M</bold>. Antibiotics in Dentistry: A Narrative Review of the Evidence beyond the Myth. Int J Environ Res Public Health. 2023 Jun; 20(11):6025. <a href="https://doi.org/10.3390/ijerph20116025" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijerph20116025</a>
  13. <bold>Davis SC, Harding A, Gil J, Parajon F, Valdes J, Solis M, Higa A</bold>. Effectiveness of a polyhexanide irrigation solution on methicillin-resistant Staphylococcus aureus biofilms in a porcine wound model. Int Wound J. 2017 Dec; 14(6):937–944. https://doi. org/<a href="https://doi.org/10.1111/iwj.12734" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/iwj.12734</a>
  14. <bold>Denkel LA, Kramer TS, Schwab F, Golembus J, Wolke S, Gastmeier P, Geffers C</bold>. Chlorhexidine and octenidine susceptibility of bacterial isolates from clinical samples in a three-armed cluster randomised decolonisation trial. PLoS One. 2022 Dec; 17(12):e0278569. <a href="https://doi.org/10.1371/journal.pone.0278569" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1371/journal.pone.0278569</a>
  15. <bold>Dittmann K, Schmidt T, Müller G, Cuny C, Holtfreter S, Troitzsch D, Pfaff P, Hübner N-O</bold>. Susceptibility of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) to chlorhexidine digluconate, octenidine dihydrochloride, polyhexanide, PVP-iodine and triclosan in comparison to hospital-acquired MRSA (HA-MRSA) and community-aquired MRSA (CA-MRSA): a standardized comparison. Antimicrob Resist Infect Control. 2019 Jul; 8:122. <a href="https://doi.org/10.1186/s13756-019-0580-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/s13756-019-0580-9</a>
  16. <bold>Dydak K, Junka A, Dydak A, Brożyna M, Paleczny J, Fijalkowski K, Kubielas G, Aniołek O, Bartoszewicz M</bold>. In Vitro Efficacy of Bacterial Cellulose Dressings Chemisorbed with Antiseptics against Biofilm Formed by Pathogens Isolated from Chronic Wounds. Int J Mol Sci. 2021 Apr; 22(8):3996. <a href="https://doi.org/10.3390/ijms22083996" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijms22083996</a>
  17. <bold>Eigner F, Keller S, Schmitt S, Corti S, Nolff MC</bold>. Efficiency of octenidine dihydrochloride alcohol combination compared to ethanol based skin antiseptics for preoperative skin preparation in dogs. PLoS One. 2023 Nov; 18(11):e0293211. <a href="https://doi.org/10.1371/journal.pone.0293211" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1371/journal.pone.0293211</a>
  18. <bold>European Standard EN 1040:2005</bold>. “Chemical disinfectants and antiseptics – Quantitative suspension test for the evaluation of basic bactericidal activity of chemical disinfectants and antiseptics – Test method and requirements (phase 1).”
  19. <bold>European Standard EN 13727:2012+A2:201</bold>. “Chemical disinfectants and antiseptics – Quantitative suspension test for the evaluation of bactericidal activity in the medical area – Test method and requirements (Phase 2, Step 1)”
  20. <bold>Fang T, Xiong J, Wang L, Feng Z, Hang S, Yu J, Li W, Feng Y, Lu H, Jiang Y</bold>. Unexpected Inhibitory Effect of Octenidine Dihydrochloride on Candida albicans Filamentation by Impairing Ergosterol Biosynthesis and Disrupting Cell Membrane Integrity. Antibiotics (Basel). 2023 Nov; 12(12):1675. <a href="https://doi.org/10.3390/antibiotics12121675" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/antibiotics12121675</a>
  21. <bold>Garratt I, Aranega-Bou P, Sutton JM, Moore G, Wand ME</bold>. LongTerm Exposure to Octenidine in a Simulated Sink Trap Environment Results in Selection of Pseudomonas aeruginosa, Citrobacter, and Enterobacter Isolates with Mutations in Efflux Pump Regulators. Appl Environ Microbiol. 2021 Apr; 87(10):e00210-21. <a href="https://doi.org/10.1128/AEM.00210-21" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/AEM.00210-21</a>
  22. <bold>Grover V, Mahendra J, Gopalakrishnan D, Jain A</bold>. Effect of octenidine mouthwash on plaque, gingivitis, and oral microbial growth: A systematic review. Clin Exp Dent Res. 2021 Aug; 7(4):450–464. <a href="https://doi.org/10.1002/cre2.386" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/cre2.386</a>
  23. <bold>Huang J, Fan Q, Guo M, Wu M, Wu S, Shen S, Wang X, Wang H</bold>. Octenidine dihydrochloride treatment of a meticillin-resistant Staphylococcus aureus biofilm-infected mouse wound. J Wound Care. 2021 Feb; 30(2):106–114. <a href="https://doi.org/10.12968/jowc.2021.30.2.106" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.12968/jowc.2021.30.2.106</a>
  24. <bold>Hübner N-O, Siebert J, Kramer A</bold>. Octenidine Dihydrochloride, a Modern Antiseptic for Skin, Mucous Membranes and Wounds. Skin Pharmacology and Physiology. 2010 May; 23(5):244–258. <a href="https://doi.org/10.1159/000314699" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1159/000314699</a>
  25. <bold>Junka A, Bartoszewicz M, Smutnicka D, Secewicz A, Szymczyk P</bold>. Efficacy of antiseptics containing povidone-iodine, octenidine dihydrochloride and ethacridine lactate against biofilm formed by Pseudomonas aeruginosa and Staphylococcus aureus measured with the novel biofilm-oriented antiseptics test. Int Wound J. 2014 Dec; 11(6):730–734. <a href="https://doi.org/10.1111/iwj.12057" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/iwj.12057</a>
  26. <bold>Karpiński TM</bold>. Adaptation Index (KAI) – a new indicator of adaptation and potential antimicrobial resistance. Herba Polonica. 2024 Sep; 70(3):39–46. <a href="https://doi.org/10.5604/01.3001.0054.8029" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.5604/01.3001.0054.8029</a>
  27. <bold>Karpiński TM, Korbecka-Paczkowska M, Ożarowski M, Włodkowic D, Wyganowska ML, Seremak-Mrozikiewicz A, Cielecka-Piontek J</bold>. Adaptation to Sodium Hypochlorite and Potassium Permanganate May Lead to Their Ineffectiveness Against Candida albicans. Pharmaceuticals (Basel). 2024 Nov; 17(11):1544. <a href="https://doi.org/10.3390/ph17111544" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ph17111544</a>
  28. <bold>Karpiński TM, Korbecka-Paczkowska M, Stasiewicz M, Mrozikiewicz AE, Włodkowic D, Cielecka-Piontek J</bold>. Activity of Antiseptics Against Pseudomonas aeruginosa and Its Adaptation Potential. Antibiotics. 2025b Jan; 14(1):30. <a href="https://doi.org/10.3390/antibiotics14010030" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/antibiotics14010030</a>
  29. <bold>Karpiński TM, Ożarowski M, Paczkowska-Walendowska M, Cielecka-Piontek J</bold>. Astaxanthin demonstrates moderate or weak activity against bacterial and fungal pathogens. Food Bioscience. 2025a Mar; 65:106026. <a href="https://doi.org/10.1016/j.fbio.2025.106026" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.fbio.2025.106026</a>
  30. <bold>Koburger T, Hübner N-O, Braun M, Siebert J, Kramer A</bold>. Standardized comparison of antiseptic efficacy of triclosan, PVP-iodine, octenidine dihydrochloride, polyhexanide and chlorhexidine digluconate. J Antimicrob Chemother. 2010 Aug; 65(8):1712–1719. <a href="https://doi.org/10.1093/jac/dkq212" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/jac/dkq212</a>
  31. <bold>Korbecka-Paczkowska M, Karpiński TM</bold>. In Vitro Assessment of Antifungal and Antibiofilm Efficacy of Commercial Mouthwashes against Candida albicans. Antibiotics (Basel). 2024 Jan; 13(2):117. <a href="https://doi.org/10.3390/antibiotics13020117" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/antibiotics13020117</a>
  32. <bold>Kramer A, Dissemond J, Kim S, Willy C, Mayer D, Papke R, Tuchmann F, Assadian O</bold>. Consensus on Wound Antisepsis: Update 2018. Skin Pharmacol Physiol. 2018 Dec; 31(1):28–58. <a href="https://doi.org/10.1159/000481545" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1159/000481545</a>
  33. <bold>Krasowski G, Junka A, Paleczny J, Czajkowska J, Makomaska-Szaroszyk E, Chodaczek G, Majkowski M, Migdał P, Fijałkowski K, Kowalska-Krochmal B, et al</bold>. In Vitro Evaluation of Polihexanide, Octenidine and NaClO/HClO-Based Antiseptics against Biofilm Formed by Wound Pathogens. Membranes (Basel). 2021 Jan; 11(1):62. <a href="https://doi.org/10.3390/membranes11010062" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/membranes11010062</a>
  34. <bold>Küng E, Pietrzak J, Klaus C, Walochnik J</bold>. In vitro effect of octenidine dihydrochloride against Trichomonas vaginalis. Int J Antimicrob Agents. 2016 Mar; 47(3):232–234. <a href="https://doi.org/10.1016/j." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.</a> ijantimicag.2015.12.010
  35. <bold>Loose M, Naber KG, Purcell L, Wirth MP, Wagenlehner FME</bold>. Anti-Biofilm Effect of Octenidine and Polyhexanide on Uropathogenic Biofilm-Producing Bacteria. Urol Int. 2021 Jan; 105(3–4):278–284. <a href="https://doi.org/10.1159/000512370" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1159/000512370</a>
  36. <bold>Malanovic N, Buttress JA, Vejzovic D, Ön A, Piller P, Kolb D, Lohner K, Strahl H</bold>. Disruption of the Cytoplasmic Membrane Structure and Barrier Function Underlies the Potent Antiseptic Activity of Octenidine in Gram-Positive Bacteria. Appl Environ Microbiol. 2022 May; 88(10):e0018022. <a href="https://doi.org/10.1128/aem.00180-22" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/aem.00180-22</a>
  37. <bold>Malanovic N, Ön A, Pabst G, Zellner A, Lohner K</bold>. Octenidine: Novel insights into the detailed killing mechanism of Gram-negative bacteria at a cellular and molecular level. Int J Antimicrob Agents. 2020 Nov; 56(5):106146. <a href="https://doi.org/10.1016/j.ijantimicag.2020.106146" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijantimicag.2020.106146</a>
  38. <bold>Meister TL, Brüggemann Y, Todt D, Conzelmann C, Müller JA, Groß R, Münch J, Krawczyk A, Steinmann Jörg, Steinmann Jochen, et al</bold>. Virucidal Efficacy of Different Oral Rinses Against Severe Acute Respiratory Syndrome Coronavirus 2. The Journal of Infectious Diseases. 2020 Oct; 222(8):1289–1292. <a href="https://doi.org/10.1093/infdis/jiaa471" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/infdis/jiaa471</a>
  39. <bold>Mivšek AP, Petročnik P, Skubic M, Škodič Zakšek T, Jug Došler A</bold>. Umbilical Cord Management and Stump Care in Normal Childbirth in Slovenian and Croatian Maternity Hospitals. Acta Clin Croat. 2017 Dec; 56(4):773–780. <a href="https://doi.org/10.20471/acc.2017.56.04.27" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.20471/acc.2017.56.04.27</a>
  40. <bold>Nair HKR, Mrozikiewicz-Rakowska B, Pinto DS, Stuermer EK, Matiasek J, Sander J, Lázaro-Martínez JL, Ousey K, Assadian O, Kim PJ, et al</bold>. Use of wound antiseptics in practice. International Consensus Document. Wounds International.: 2023. 1–27.
  41. <bold>Nicolae Dopcea G, Dopcea I, Nanu AE, Diguţă CF, Matei F</bold>. Resistance and cross-resistance in Staphylococcus spp. strains following prolonged exposure to different antiseptics. J Glob Antimicrob Resist. 2020 Jun; 21:399–404. <a href="https://doi.org/10.1016/j.jgar.2019.10.021" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jgar.2019.10.021</a>
  42. <bold>Novakov Mikić A, Stojic S</bold>. Study results on the use of different therapies for the treatment of vaginitis in hospitalised pregnant women. Arch Gynecol Obstet. 2015 Aug; 292(2):371–376. <a href="https://doi.org/10.1007/s00404-015-3638-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00404-015-3638-9</a>
  43. <bold>Pelling H, Bennett V, Bock LJ, Wand ME, Denham EL, MacFarlane WM, Sutton JM, Jones BV</bold>. Identification of mechanisms modulating chlorhexidine and octenidine susceptibility in Proteus mirabilis. J Appl Microbiol. 2024 Jul; 135(7):lxae173. <a href="https://doi.org/10.1093/jambio/lxae173" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/jambio/lxae173</a>
  44. <bold>PubChem</bold>. Octenidine Hydrochloride. [accessed 2025 Mar 4]. https://pubchem.ncbi.nlm.nih.gov/compound/51166.
  45. <bold>Rath A, Wong M, Li K, Wong A, Tan L, Tan K, Pannuti CM</bold>. Efficacy of adjunctive octenidine hydrochloride as compared to chlorhexidine and placebo as adjuncts to instrumentation in stage I-II periodontitis: A double-blinded randomized controlled trial. Int J Dent Hyg. 2024 Nov; <a href="https://doi.org/10.1111/idh.12795" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/idh.12795</a>
  46. <bold>Rembe J-D, Huelsboemer L, Plattfaut I, Besser M, Stuermer EK</bold>. Antimicrobial Hypochlorous Wound Irrigation Solutions Demonstrate Lower Anti-biofilm Efficacy Against Bacterial Biofilm in a Complex in-vitro Human Plasma Biofilm Model (hpBIOM) Than Common Wound Antimicrobials. Front Microbiol. 2020 Oct; 11:564513. <a href="https://doi.org/10.3389/fmicb.2020.564513" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fmicb.2020.564513</a>
  47. <bold>Schedler K, Assadian O, Brautferger U, Müller G, Koburger T, Classen S, Kramer A</bold>. Proposed phase 2/step 2 in-vitro test on basis of EN 14561 for standardised testing of the wound antiseptics PVP-iodine, chlorhexidine digluconate, polihexanide and octenidine dihydrochloride. BMC Infectious Diseases. 2017 Feb; 17(1):143. <a href="https://doi.org/10.1186/s12879-017-2220-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/s12879-017-2220-4</a>
  48. <bold>Schug AR, Scholtzek AD, Turnidge J, Meurer M, Schwarz S, Feßler AT</bold>. The Biocide Susceptibility Study Group null. Development of Quality Control Ranges for Biocide Susceptibility Testing. Pathogens. 2022 Feb; 11(2):223. <a href="https://doi.org/10.3390/pathogens11020223" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/pathogens11020223</a>
  49. <bold>Severing A-L, Borkovic M, Stuermer EK, Rembe J-D</bold>. Composition of Challenge Substance in Standardized Antimicrobial Efficacy Testing of Wound Antimicrobials Is Essential to Correctly Simulate Efficacy in the Human Wound Micro-Environment. Biomedicines. 2022 Oct; 10(11):2751. <a href="https://doi.org/10.3390/biomedicines10112751" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/biomedicines10112751</a>
  50. <bold>Sharma A, Shankar R, Yadav AK, Pratap A, Ansari MA, Srivastava V</bold>. Burden of Chronic Nonhealing Wounds: An Overview of the Worldwide Humanistic and Economic Burden to the Healthcare System. Int J Low Extrem Wounds. 2024 Apr; 15347346241246339. <a href="https://doi.org/10.1177/15347346241246339" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1177/15347346241246339</a>
  51. <bold>Shepherd MJ, Moore G, Wand ME, Sutton JM, Bock LJ</bold>. Pseudomonas aeruginosa adapts to octenidine in the laboratory and a simulated clinical setting, leading to increased tolerance to chlorhexidine and other biocides. J Hosp Infect. 2018 Nov; 100(3):e23–e29. <a href="https://doi.org/10.1016/j.jhin.2018.03.037" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jhin.2018.03.037</a>
  52. <bold>da Silva DAV, Dieckmann R, Makarewicz O, Hartung A, Bethe A, Grobbel M, Belik V, Pletz MW, Al Dahouk S, Neuhaus S</bold>. Biocide Susceptibility and Antimicrobial Resistance of Escherichia coli Isolated from Swine Feces, Pork Meat and Humans in Germany. Antibiotics (Basel). 2023 Apr; 12(5):823. <a href="https://doi.org/10.3390/antibiotics12050823" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/antibiotics12050823</a>
  53. <bold>Smeets R, Pfefferle S, Büttner H, Knobloch JK, Lütgehetmann M</bold>. Impact of Oral Rinsing with Octenidine Based Solution on SARS-CoV-2 Loads in Saliva of Infected Patients an Exploratory Study. Int J Environ Res Public Health. 2022 May; 19(9):5582. <a href="https://doi.org/10.3390/ijerph19095582" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijerph19095582</a>
  54. <bold>Sopata M, Mrozikiewicz-Rakowska B, Jawień A, Woroń J, Malka M, Karpiński TM, Sobieszek-Kundro A, Gabriel M, Mańkowski P, Szewczyk M, et al</bold>. Statement of the Polish Wound Management Association – antimicrobial management in colonized wounds, with signs of infection and at risk of infection in the era of antibiotic resistance [in Polish]. Leczenie Ran. 2023 Dec; 20(4):124–141. doi:<a href="https://doi.org/10.60075/lr.v20i4.59" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.60075/lr.v20i4.59</a>
  55. <bold>Steinhauer K, Meister TL, Todt D, Krawczyk A, Paßvogel L, Becker B, Paulmann D, Bischoff B, Pfaender S, Brill FHH, et al</bold>. Comparison of the in-vitro efficacy of different mouthwash solutions targeting SARS-CoV-2 based on the European Standard EN 14476. J Hosp Infect. 2021 May; 111:180–183. <a href="https://doi.org/10.1016/j." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.</a> jhin.2021.01.031
  56. <bold>Swidsinski A, Loening-Baucke V, Swidsinski S, Verstraelen H</bold>. Polymicrobial Gardnerella biofilm resists repeated intravaginal antiseptic treatment in a subset of women with bacterial vaginosis: a preliminary report. Arch Gynecol Obstet. 2015 Mar; 291(3):605–609. <a href="https://doi.org/10.1007/s00404-014-3484-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00404-014-3484-1</a>
  57. <bold>Tagliaferri TL, Rhode S, Muñoz P, Simon K, Krüttgen A, Stoppe C, Ruhl T, Beier JP, Horz H-P, Kim B-S</bold>. Antiseptic management of critical wounds: differential bacterial response upon exposure to antiseptics and first insights into antiseptic/phage interactions. Int J Surg. 2024 Sep; 110(9):5374–5384. <a href="https://doi.org/10.1097/JS9.0000000000001605" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1097/JS9.0000000000001605</a>
  58. <bold>Tirali RE, Turan Y, Akal N, Karahan ZC</bold>. In vitro antimicrobial activity of several concentrations of NaOCl and Octenisept in elimination of endodontic pathogens. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009 Nov; 108(5):e117-120. <a href="https://doi.org/10.1016/j.tripleo.2009.07.012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.tripleo.2009.07.012</a>
  59. <bold>Vejzovic D, Iftic A, Ön A, Semeraro EF, Malanovic N</bold>. Octenidine’s Efficacy: A Matter of Interpretation or the Influence of Experimental Setups? Antibiotics (Basel). 2022 Nov; 11(11):1665. <a href="https://doi.org/10.3390/antibiotics11111665" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/antibiotics11111665</a>
  60. <bold>Verspecht T, Rodriguez Herrero E, Khodaparast Ladan, Khodaparast Laleh, Boon N, Bernaerts K, Quirynen M, Teughels W</bold>. Development of antiseptic adaptation and cross-adapatation in selected oral pathogens in vitro. Sci Rep. 2019 Jun; 9(1):8326. <a href="https://doi.org/10.1038/s41598-019-44822-y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41598-019-44822-y</a>
  61. <bold>Wand ME, Jamshidi S, Bock LJ, Rahman KM, Sutton JM</bold>. SmvA is an important efflux pump for cationic biocides in Klebsiella pneumoniae and other Enterobacteriaceae. Sci Rep. 2019 Feb; 9(1):1344. <a href="https://doi.org/10.1038/s41598-018-37730-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41598-018-37730-0</a>
DOI: https://doi.org/10.2478/am-2025-0014 | Journal eISSN: 2545-3149 | Journal ISSN: 0079-4252
Language: English, Polish
Page range: 182 - 191
Submitted on: Mar 7, 2025
Accepted on: Jul 23, 2025
Published on: Sep 30, 2025
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2025 Tomasz M. Karpiński, Marzena Korbecka-Paczkowska, Agnieszka Zeidler, Wojciech Grzywna, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.