Have a personal or library account? Click to login
Narlx Two-Component Signaling System as a Key Mechanism of Bacterial Adaptation Cover

Narlx Two-Component Signaling System as a Key Mechanism of Bacterial Adaptation

By: Klaudia Musiał and  Dawid Gmiter  
Open Access
|Jul 2025

References

  1. Ahator S. Dela, Wenzl K., Hegstad K., Lentz C.S., Johannessen M.: Comprehensive virulence profiling and evolutionary analysis of specificity determinants in Staphylococcus aureus two-component systems. mSystems. 9(4) (2024) DOI:10.1128/msystems.00130-24
  2. Van Alst N.E., Picardo K.F., Iglewski B.H., Haidaris C.G.: Nitrate Sensing and Metabolism Modulate Motility, Biofilm Formation, and Virulence in Pseudomonas aeruginosa. Infect Immun. 75, 3780–3790 (2007) DOI:10.1128/iai.00201-07
  3. Alvarez A.F., Barba‐Ostria C., Silva‐Jiménez H., Georgellis D.: Organization and mode of action of two component system signaling circuits from the various kingdoms of life. Environ Microbiol. 18, 3210–3226 (2016) DOI:10.1111/1462-2920.13397
  4. Alvarez A.F., Georgellis D.: Environmental adaptation and diversification of bacterial two-component systems. Curr Opin Microbiol. 76, 102399 (2023) DOI:10.1016/j.mib.2023.102399
  5. Barrett J.F. & Hoch J.A.: Antibacterial agents that inhibit two-component signal transduction systems. Proc Natl Acad Sci U S A. 95, 5317–5322 (1998) DOI:10.1073/pnas.95.9.5317
  6. Bearson S.M., Albrecht J.A., Gunsalus R.P.: Oxygen and nitrate-dependent regulation of dmsABC operon expression in Escherichia coli: sites for Fnr and NarL protein interactions. BMC Microbiol. 2, 13 (2002) DOI:10.1186/1471-2180-2-13
  7. Beier D., Gross R.: Regulation of bacterial virulence by two-component systems. Curr Opin Microbiol. 9, 143–152 (2006) DOI:10.1016/j.mib.2006.01.005
  8. Bertero M.G., Rothery R.A., Palak M., Hou C., Lim D., Blasco F., Weiner J.H., Strynadka N.C.J.: Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A. Nat Struct Mol Biol. 10, 681–687 (2003). DOI:10.1038/nsb969
  9. Blattner F.R. & Shao Y.: The Complete Genome Sequence of Escherichia coli K-12. Science 277, 1453–1462 (1997) DOI:10.1126/science.277.5331.1453
  10. Bongaerts J., Zoske S., Weidner U., Linden G.: Transcriptional regulation of the proton translocating NADH dehydrogenase (nuoA‐N) of Escherichia coli by electron acceptors, electron donors and gene regulators. Mol Microbiol. 16, 521–534 (1995) DOI:10.1111/j.1365-2958.1995.tb02416.x
  11. Burbulys D., Trach K.A., Hoch J.A.: Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64, 545–552 (1991) DOI:10.1016/0092-8674(91)90238-t
  12. Cavicchioli R., Schröder I., Constanti M., Gunsalus R.P.: The NarX and NarQ sensor-transmitter proteins of Escherichia coli each require two conserved histidines for nitrate-dependent signal transduction to NarL. J Bacteriol. 177, 2416–2424 (1995) DOI:10.1128/jb.177.9.2416-2424.1995
  13. Chiang R.C., Cavicchioli R., Gunsalus R.P.: ‘Locked‐on’ and ‘locked‐off’ signal transduction mutations in the periplasmic domain of the Escherichia coli NarQ and NarX sensors affect nitrate‐ and nitrite‐dependent regulation by NarL and NarP. Mol Microbiol. 24, 1049–1060 (1997) DOI:10.1046/j.1365-2958.1997.4131779.x
  14. Constantinidou C., Hobman J.L., Griffiths L., Patel M.D., Penn C.W., Cole J.A., Overton T.W.: A Reassessment of the FNR Regulon and Transcriptomic Analysis of the Effects of Nitrate, Nitrite, NarXL, and NarQP as Escherichia coli K12 Adapts from Aerobic to Anaerobic Growth. J Biol Chem. 281, 4802–4815 (2006) DOI:10.1074/jbc.m512312200
  15. Cowan D.A., Khan N., Pointing S.B., Cary S.C.: Diverse hypolithic refuge communities in the McMurdo Dry Valleys. Antarct Sci. 22, 714–720 (2010) DOI:10.1017/s0954102010000507
  16. Eichler K., Buchet A., Lemke R., Kleber H.P., Mandrand-Berthelot M.A..: Identification and characterization of the caiF gene encoding a potential transcriptional activator of carnitine metabolism in Escherichia coli. J Bacteriol. 178, 1248–1257 (1996) DOI:10.1128/jb.178.5.1248-1257.1996
  17. Fang F.C., Vázquez-Torres A.: Reactive nitrogen species in host–bacterial interactions. Curr Opin Immunol. 60, 96–102 (2019) DOI:10.1016/j.coi.2019.05.008
  18. Fritz C., Maass S., Kreft A., Bange F.-C.: Dependence of Mycobacterium bovis BCG on Anaerobic Nitrate Reductase for Persistence Is Tissue Specific. Infect Immun. 70, 286–291 (2002) DOI:10.1128/iai.70.1.286-291.2002
  19. Gao R., Bouillet S., Stock A.M.: Structural Basis of Response Regulator Function. Annu Rev Microbiol. 73, 175–197 (2019) DOI:10.1146/annurev-micro-020518-115931
  20. Godfrey R.E., Lee D.J., Busby S.J.W., Browning D.F.: Regulation of nrf operon expression in pathogenic enteric bacteria: sequence divergence reveals new regulatory complexity. Mol Microbiol. 104, 580–594 (2017) DOI:10.1111/mmi.13647
  21. Goh E.-B., Bledsoe P.J., Chen L.-L., Gyaneshwar P., Stewart V., Igo M.M.: Hierarchical Control of Anaerobic Gene Expression in Escherichia coli K-12: the Nitrate-Responsive NarX-NarL Regulatory System Represses Synthesis of the Fumarate-Responsive DcuS-DcuR Regulatory System. J Bacteriol. 187, 4890–4899(14) (2005) DOI:10.1128/jb.187.14.4890-4899.2005
  22. Gomes L.H.F. & Mendonça-Lima L.: Genome Sequence of Mycobacterium bovis BCG Moreau, the Brazilian Vaccine Strain against Tuberculosis. J Bacteriol. 193, 5600–5601(19) (2011) DOI:10.1128/jb.05827-11
  23. Gushchin I., Aleksenko V.A., Orekhov P., Goncharov I.M., Nazarenko V. V., Semenov O., Remeeva A., Gordeliy V.: Nitrate-and Nitrite-Sensing Histidine Kinases: Function, Structure, and Natural Diversity. Int J Mol Sci. 22, 5933 (2021) DOI:10.3390/ijms22115933
  24. Härtig E., Schiek U., Vollack K.-U., Zumft W.G.: Nitrate and Nitrite Control of Respiratory Nitrate Reduction in Denitrifying Pseudomonas stutzeri by a Two-Component Regulatory System Homologous to NarXL of Escherichia coli. J Bacteriol. 181, 3658–3665 (1999) DOI:10.1128/jb.181.12.3658-3665.1999
  25. Jonas O.B., Berthe F.C.J., Irwin A., Le Gall F.G., Marquez P. V.: DRUG-RESISTANT INFECTIONS A Threat to Our Economic Future. www.worldbank.org
  26. Kaiser M., Sawers G.: Nitrate repression of the Escherichia coli pfl operon is mediated by the dual sensors NarQ and NarX and the dual regulators NarL and NarP. J Bacteriol. 177, 3647–3655 (1995) DOI:10.1128/jb.177.13.3647-3655.1995
  27. Kanehisa M., Furumichi M., Sato Y., Kawashima M., Ishiguro-Watanabe M.: KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51, D587–D592 (2023) DOI:10.1093/nar/gkac963
  28. Kato A., Tanabe H., Utsumi R.: Molecular Characterization of the PhoP-PhoQ Two-Component System in Escherichia coli K-12: Identification of Extracellular Mg 2+-Responsive Promoters. J Bacteriol. 181, 5516–5520 (1999) DOI:10.1128/jb.181.17.5516-5520.1999
  29. Kinkel T.L., Roux C.M., Dunman P.M., Fang F.C.: The Staphylococcus aureus SrrAB Two-Component System Promotes Resistance to Nitrosative Stress and Hypoxia. MBio. 4(6) (2013) DOI:10.1128/mbio.00696-13
  30. Kuang S., Feng D., Chen Z., Liang Z., Xiang J., Li H., Peng X., Zhang T.: Inactivation of Nitrite-Dependent Nitric Oxide Biosynthesis Is Responsible for Overlapped Antibiotic Resistance between Naturally and Artificially Evolved Pseudomonas aeruginosa. mSystems 6(5) (2021) DOI:10.1128/msystems.00732-21
  31. Laub M.T., Goulian M.: Specificity in Two-Component Signal Transduction Pathways. Annu Rev Genet. 41, 121–145 (2007) DOI:10.1146/annurev.genet.41.042007.170548
  32. Li J., Kustu S., Stewart V.: In Vitro Interaction of Nitrate-responsive Regulatory Protein NarL with DNA Target Sequences in the fdnG, narG, narK and frdA Operon Control Regions of Escherichia coli K-12. J Mol Biol. 241, 150–165 (1994) DOI:10.1006/jmbi.1994.1485
  33. Li Y., Pan T., Cao R., Li W., He Z., Sun B.: Nitrate Reductase NarGHJI Modulates Virulence via Regulation of agr Expression in Methicillin-Resistant Staphylococcus aureus Strain USA300 LAC. Microbiol Spectr. 11(3) (2023) DOI:10.1128/spectrum.03596-22
  34. Lin H.-Y., Bledsoe P.J., Stewart V.: Activation of yeaR-yoaG Operon Transcription by the Nitrate-Responsive Regulator NarL Is Independent of Oxygen-Responsive Regulator Fnr in Escherichia coli K-12. J Bacteriol. 189, 7539–7548 (2007) DOI:10.1128/jb.00953-07
  35. Mangalea M.R., Borlee B.R.: The NarX-NarL two-component system regulates biofilm formation, natural product biosynthesis, and host-associated survival in Burkholderia pseudomallei. Sci Rep. 12, 203 (2022) DOI:10.1038/s41598-021-04053-6
  36. Marogi J.G., Murphy C.T., Myhrvold C., Gitai Z.: Pseudomonas aeruginosa modulates both Caenorhabditis elegans attraction and pathogenesis by regulating nitrogen assimilation. Nat Commun. 15, 7927(1) (2024) DOI:10.1038/s41467-024-52227-3
  37. Martín-Rodríguez A.J., Rhen M., Melican K., Richter-Dahlfors A.: Nitrate Metabolism Modulates Biosynthesis of Biofilm Components in Uropathogenic Escherichia coli and Acts as a Fitness Factor During Experimental Urinary Tract Infection. Front Microbiol. 11 (2020) DOI:10.3389/fmicb.2020.00026
  38. Membrillo-Hernández J., Lin E.C.C.: Regulation of Expression of the adhE Gene, Encoding Ethanol Oxidoreductase in Escherichia coli : Transcription from a Downstream Promoter and Regulation by Fnr and RpoS. J Bacteriol. 181, 7571–7579 (1999) DOI:10.1128/jb.181.24.7571-7579.1999
  39. Mian A.I., Aranke M., Bryan N.S.: Nitric Oxide and its Metabolites in the Critical Phase of Illness: Rapid Biomarkers in the Making. Open Biochem J. 7, 24–32 (2013) DOI:10.2174/1874091x01307010024
  40. Miller A.L., Nicastro L.K., Bessho S., Grando K., White A.P., Zhang Y., Queisser G., Buttaro B.A., Tükel Ç.: Nitrate Is an Environmental Cue in the Gut for Salmonella enterica Serovar Typhimurium Biofilm Dispersal through Curli Repression and Flagellum Activation via Cyclic-di-GMP Signaling. MBio. 13(1) (2022) DOI:10.1128/mbio.02886-21
  41. Mitrophanov A.Y., Groisman E.A.: Signal integration in bacterial two-component regulatory systems. Genes Dev. 22, 2601–2611 (2008) DOI:10.1101/gad.1700308
  42. Murray C.J.L. & Naghavi M.: Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 399, 629–655 (2022) DOI:10.1016/s0140-6736(21)02724-0
  43. Noriega C.E., Lin H., Chen L., Williams S.B., Stewart V.: Asymmetric cross‐regulation between the nitrate‐responsive NarX–NarL and NarQ–NarP two‐component regulatory systems from Escherichia coli K‐12. Mol Microbiol. 75, 394–412(2) (2010) DOI:10.1111/j.1365-2958.2009.06987.x
  44. Noriega C.E., Schmidt R., Gray M.J., Chen L.-L., Stewart V.: Autophosphorylation and Dephosphorylation by Soluble Forms of the Nitrate-Responsive Sensors NarX and NarQ from Escherichia coli K-12. J Bacteriol. 190, 3869–3876 (2008) DOI:10.1128/jb.00092-08
  45. Parkinson J.S.: Signal transduction schemes of bacteria. Cell. 73, 857–871 (1993) DOI:10.1016/0092-8674(93)90267-t
  46. Pikuta E. V., Hoover R.B., Tang J.: Microbial Extremophiles at the Limits of Life. Crit Rev Microbiol. 33, 183–209 (2007) DOI:10.1080/10408410701451948
  47. Priyadarsini S. & Kumar A.: Deletion of both anaerobic regulator genes fnr and narL compromises the colonization of Salmonella Typhimurium in mice model. World J Microbiol Biotechnol. 40, 373 (2024) DOI:10.1007/s11274-024-04179-5
  48. Rabin R.S., Stewart V.: Dual response regulators (NarL and NarP) interact with dual sensors (NarX and NarQ) to control nitrate-and nitrite-regulated gene expression in Escherichia coli K-12. J Bacteriol. 175, 3259–3268 (1993) DOI:10.1128/jb.175.11.3259-3268.1993
  49. Richard D.J., Sargent F., Sawers G., McWalter L., Boxer D.H.: Transcriptional regulation in response to oxygen and nitrate of the operons encoding the [NiFe] hydrogenases 1 and 2 of Escherichia coli. Microbiology 145, 2903–2912 (1999) DOI:10.1099/00221287-145-10-2903
  50. Rothschild L.J., Mancinelli R.L.: Life in extreme environments. Nature. 409, 1092–1101 (2001) DOI:10.1038/35059215
  51. Scales B.S., Dickson R.P., Huffnagle G.B.: A tale of two sites: how inflammation can reshape the microbiomes of the gut and lungs. J Leukoc Biol. 100, 943–950 (2016) DOI:10.1189/jlb.3mr0316-106r
  52. Schreiber K., Krieger R., Benkert B., Eschbach M., Arai H., Schobert M., Jahn D.: The Anaerobic Regulatory Network Required for Pseudomonas aeruginosa Nitrate Respiration. J Bacteriol. 189, 4310–4314 (2007) DOI:10.1128/jb.00240-07
  53. Schröder I., Wolin C.D., Cavicchioli R., Gunsalus R.P.: Phosphorylation and dephosphorylation of the NarQ, NarX, and NarL proteins of the nitrate-dependent two-component regulatory system of Escherichia coli. J Bacteriol. 176, 4985–4992 (1994) DOI:10.1128/jb.176.16.4985-4992.1994
  54. Shivakumar K. V., Karunakar P., Chatterjee J.: Inhibition of NarL of Mycobacterium Tuberculosis: an in silico approach. Interdiscip Sci Comput Life Sci. 6, 292–299 (2014) DOI:10.1007/s12539-014-0179-z
  55. Skerker J.M., Prasol M.S., Perchuk B.S., Biondi E.G., Laub M.T.: Two-Component Signal Transduction Pathways Regulating Growth and Cell Cycle Progression in a Bacterium: A System-Level Analysis. PLoS Biol. 3, e334 (2005) DOI:10.1371/journal.pbio.0030334
  56. Stewart V.: Nitrate-and nitrite-responsive sensors NarX and NarQ of proteobacteria. Biochem Soc Trans. 31, 1–10(1) (2003) DOI:10.1042/bst0310001
  57. Stock A.M., Robinson V.L., Goudreau P.N.: Two-Component Signal Transduction. Annu Rev Biochem. 69, 183–215 (2000) DOI:10.1146/annurev.biochem.69.1.183
  58. Tingle B.I., Tang K.G., Castanon M., Gutierrez J.J., Khurelbaatar M., Dandarchuluun C., Moroz Y.S., Irwin J.J.: ZINC-22–A Free Multi-Billion-Scale Database of Tangible Compounds for Ligand Discovery. J Chem Inf Model. 63, 1166–1176 (2023) DOI:10.1021/acs.jcim.2c01253
  59. Tyson K.L., Cole J.A., Busby S.J.W.: Nitrite and nitrate regulation at the promoters of two Escherichia coli operons encoding nitrite reductase: identification of common target heptamers for both NarP‐ and NarL‐dependent regulation. Mol Microbiol. 13, 1045–1055 (1994) DOI:10.1111/j.1365-2958.1994. tb00495.x
  60. Unden G., Schirawski J.: The oxygen‐responsive transcriptional regulator FNR of Escherichia coli : the search for signals and reactions. Mol Microbiol. 25, 205–210 (1997) DOI:10.1046/j.1365-2958.1997.4731841.x
  61. Vollack K.-U., Xie J., Härtig E., Römling U., Zumft W.G.: Localization of denitrification genes on the chromosomal map of Pseudomonas aeruginosa. Microbiology 144, 441–448 (1998) DOI:10.1099/00221287-144-2-441
  62. Worthington R.J., Blackledge M.S., Melander C.: Small-Molecule Inhibition of Bacterial Two-Component Systems to Combat Antibiotic Resistance and Virulence. Future Med Chem. 5, 1265–1284 (2013) DOI:10.4155/fmc.13.58
  63. Xu M., Busby S.J.W., Browning D.F.: Activation and Repression at the Escherichia coli ynfEFGHI Operon Promoter. J Bacteriol. 191, 3172–3176 (2009) DOI:10.1128/jb.00040-09
  64. Yaeger L.N., French S., Brown E.D., Côté J.P., Burrows L.L.: Central metabolism is a key player in E. coli biofilm stimulation by sub-MIC antibiotics. PLOS Genet. 19, e1011013 (2023) DOI:10.1371/journal.pgen.1011013
DOI: https://doi.org/10.2478/am-2025-0006 | Journal eISSN: 2545-3149 | Journal ISSN: 0079-4252
Language: English, Polish
Page range: 63 - 73
Submitted on: Feb 24, 2025
|
Accepted on: May 28, 2025
|
Published on: Jul 8, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Klaudia Musiał, Dawid Gmiter, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.