References
- Abbott T.R. & Dhamdhere G. et al.: Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza. Cell, 181, 865–876 (2020)
- Afkhami S., Yao Y., Xing Z.: Methods and clinical development of adenovirus-vectored vaccines against mucosal pathogens. Mol. Ther. Methods Clin. Dev. 3, 16030 (2016)
- Amitai G., Sorek R.: CRISPR-Cas adaptation: insights into the mechanism of action. Nat. Rev. Microbiol. 14, 67 (2016)
- Artika I.M., Wiyatno A., Ma’roef C.N.: Pathogenic viruses: Molecular detection and characterization. Infect. Genet. Evol. 81, 104215 (2020)
- Barrangou R., Doudna J.A.: Applications of CRISPR technologies in research and beyond. Nat. Biotechnol. 34, 933–941 (2016)
- Bella R. & Kaminski R. et al.: Removal of HIV DNA by CRISPR from Patient Blood Engrafts in Humanized Mice. Mol. Ther Nucleic Acids, 12, 275–282 (2018)
- Bikard D., Hatoum-Aslan A., Mucida D., Marraffini L.A.: CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host Microbe, 12, 177–186 (2012)
- Biti R., Ffrench R., Young J., Bennetts B., Stewart G., Liang T.: HIV-1 infection in an individual homozygous for the CCR5 deletion allele. Nature med. 3, 252–253 (1997)
- Bowers N.L., Helton E.S., Huijbregts R.P., Goepfert P.A.., Heath S.L., Hel Z.: Immune suppression by neutrophils in HIV-1 infection: role of PD-L1/PD-1 pathway. PLoS Pathog. 10, e1003993 (2014)
- Broughton J.P., Deng X., Yu G., Fasching C.L., Servellita V., Singh J., Miao X., Streithorst J.A., Granados A., Sotomayor-Gonzalez A.: CRISPR-Cas12-based detection of SARS-CoV-2. Nat. Biotechnol. 38, 870–874 (2020)
- Brouns S.J., Jore M.M., Lundgren M., Westra E.R., Slijkhuis R.J., Snijders A.P., Dickman M.J., Makarova K.S., Koonin E.V.: Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 321, 960–964 (2008)
- Cassan E., Arigon-Chifolleau A.M., Mesnard J.M., Gross A., Gascuel O.: Concomitant emergence of the antisense protein gene of HIV-1 and of the pandemic. Proc. Natl. Acad. Sci. 113, 11537–11542 (2016)
- Ceasar S.A., Rajan V., Prykhozhij S.V., Berman J.N., Ignacimuthu S.: Insert, remove or replace: A highly advanced genome editing system using CRISPR/Cas9. Biochem. Biophys. Acta, 1863, 2333–2344 (2016)
- Center C.R.: Center for Systems Science and Engineering, Johns Hopkins Coronavirus Resource Center. COVID-19 Dashboard, https://coronavirus.jhu.edu/map.html (2022)
- Charpentier E., Marraffini L.A.: Harnessing CRISPR-Cas9 immunity for genetic engineering. Curr. Opin. Microbiol. 19, 114–119 (2014)
- Chaudhuri A., Halder K., Datta A.: Classification of CRISPR/Cas system and its application in tomato breeding. Theor. Appl. Genet. 135, 367–387 (2022)
- Chavez L., Calvanese V., Verdin E.: HIV latency is established directly and early in both resting and activated primary CD4 T cells. PLoS Pathog. 11, e1004955 (2015)
- Chen S., Yu X., Guo D.: CRISPR-Cas targeting of host genes as an antiviral strategy. Viruses, 10, 40 (2018)
- Chen X., Rinsma M., Janssen J.M., Liu J., Maggio I., Gonçalves M.A.: Probing the impact of chromatin conformation on genome editing tools. Nucleic Acids Res. 44, 6482–6492 (2016)
- Cho S.W., Kim S., Kim J.M., Kim J.S.: Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230–232 (2013)
- Chun T.W., Nickle D.C., Justement J.S., Meyers J.H., Roby G., Hallahan C.W., Kottilil S., Moir S., Mican J.M., Mullins J.I.: Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy. J. Infect. Dis. 197, 714–720 (2008)
- Coen D.M., Schaffer P.A.: Antiherpesvirus drugs: a promising spectrum of new drugs and drug targets. Nat. Rev. Drug Discov. 2, 278–288 (2003)
- Cohen M.S., Shaw G.M., McMichael A.J., Haynes B.F.: Acute HIV-1 infection. N. Engl. J. Med. 364, 1943–1954 (2011)
- Cui J., Li F., Shi Z.L.: Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181–192 (2019)
- De Wit E., Van Doremalen N., Falzarano D., Munster V.J.: SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 14, 523 (2016)
- Deltcheva E., Chylinski K., Sharma C.M., Gonzales K., Chao Y., Pirzada Z.A., Eckert M.R., Vogel J., Charpentier E.: CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 471, 602–607 (2011)
- Diner B.A., Lum K.K., Toettcher J.E., Cristea I.M.: Viral DNA sensors IFI16 and cyclic GMP-AMP synthase possess distinct functions in regulating viral gene expression, immune defenses, and apoptotic responses during herpesvirus infection. MBio, 7, e01553 (2016)
- Donoghue M., Hsieh F., Baronas E., Godbout K., Gosselin M., Stagliano N., Donovan M., Woolf B., Robison K., Jeyaseelan R.: A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res. 87, 1–9 (2000)
- Doudna J.A., Charpentier E.: The new frontier of genome engineering with CRISPR-Cas9. Science, 346, 6213 (2014)
- Duan J., Lu G., Xie Z., Lou M., Luo J., Guo L., Zhang Y.: Genome-wide identification of CRISPR/Cas9 off-targets in human genome. Cell res. 24, 1009–1012 (2014)
- Ebina H., Misawa N., Kanemura Y., Koyanagi Y.: Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci. Rep. 3, 1–7 (2013)
- Ebrahimi S., Khanbabaei H., Abbasi S., Fani M., Soltani S., Zandi M., Najafimemar Z.: CRISPR-Cas System: A Promising Diagnostic Tool for Covid-19. Avicenna J. Med. Biotechnol. 14, 3–9 (2022)
- Eggleton J.S., Nagalli S.: Highly active antiretroviral therapy (HAART). StatPearls, 4 (2020)
- Fätkenheuer G., Nelson M., Lazzarin A., Konourina I., Hoepelman A.I., Lampiris H., Hirschel B., Tebas P., Raffi F., Trottier B.: Subgroup analyses of maraviroc in previously treated R5 HIV-1 infection. N. Engl. J. Med. 359, 1442–1455 (2008)
- Fehr A.R., Perlman S.: Coronaviruses: an overview of their replication and pathogenesis. Methods Mol. Biol. 1282, 1–23 (2015)
- Fischer-Smith T., Croul S., Sverstiuk A.E., Capini C., L’Heureux D., Régulier E.G., Richardson M.W., Amini S., Morgello S., Khalili K.: CNS invasion by CD14+/CD16+ peripheral blood-derived monocytes in HIV dementia: perivascular accumulation and reservoir of HIV infection. J. NeuroVirology, 7, 528–541 (2001)
- Gallastegui E., Millán-Zambrano G., Terme J.M., Chávez S., Jordan A.: Chromatin reassembly factors are involved in transcriptional interference promoting HIV latency. J. Virol. 85, 3187–3202 (2011)
- Garneau J.E., Dupuis M.-È., Villion M., Romero D.A., Barrangou R., Boyaval P., Fremaux C., Horvath P., Magadán A.H., Moineau S.: The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468, 67–71 (2010)
- Gasiunas G., Barrangou R., Horvath P., Siksnys V.: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. 109, e2579 (2012)
- Gootenberg J.S., Abudayyeh O.O., Kellner M.J., Joung J., Collins J.J., Zhang F.: Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science, 360, 439–444 (2018)
- Gootenberg J.S., Abudayyeh O.O., Lee J.W., Essletzbichler P., Dy A.J., Joung J., Verdine V., Donghia N., Daringer N.M., Freije C.A.: Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 356, 438–442 (2017)
- Gorbalenya A.E. & Baker S.C. et al.: The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 5, 536 (2020)
- Griffin B.D., Verweij M.C., Wiertz E.J.: Herpesviruses and immunity: the art of evasion. Vet. Microbiol. 143, 89–100 (2010)
- Guy J.L., Jackson R.M., Jensen H.A., Hooper N.M., Turner A.J.: Identification of critical active-site residues in angiotensin-converting enzyme-2 (ACE2) by site-directed mutagenesis. FEBS Lett. 272, 3512 (2005)
- Heidenreich M., Zhang F.: Applications of CRISPR-Cas systems in neuroscience. Nat. Rev. Neurosci. 17, 36 (2016)
- Hladik F., McElrath M.J.: Setting the stage: host invasion by HIVNat. Rev. Immunol. 8, 447–457 (2008)
- Horlbeck M.A., Witkowsky L.B., Guglielmi B., Replogle J.M., Gilbert L.A., Villalta J.E., Torigoe S.E., Tjian R., Weissman J.S.: Nucleosomes impede Cas9 access to DNA in vivo and in vitro. Elife, 5, e12677 (2016)
- Hou P., Chen S., Wang S., Yu X., Chen Y., Jiang M., Zhuang K., Ho W., Hou W., Huang J.: Genome editing of CXCR4 by CRISPR/cas9 confers cells resistant to HIV-1 infection. Sci. Rep. 5, 1–12 (2015)
- Hsu P.D., Lander E.S., Zhang F.: Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157, 1262–1278 (2014)
- Hu W., Kaminski R., Yang F., Zhang Y., Cosentino L., Li F., Luo B., Alvarez-Carbonell D., Garcia-Mesa Y., Karn J.: RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc. Natl. Acad. Sci. 111, 11461–11466 (2014)
- Huang S.H. & Ren Y. et al.: Latent HIV reservoirs exhibit inherent resistance to elimination by CD8+ T cells. J. Clin. Invest. 128, 876–889 (2018)
- Hultquist J.F., Schumann K., Woo J.M., Manganaro L., McGregor M.J., Doudna J., Simon V., Krogan N.J., Marson A.: A Cas9 ribonucleoprotein platform for functional genetic studies of HIV-host interactions in primary human T cells. Cell rep. 17, 1438–1452 (2016)
- Jiang F., Doudna J.A.: CRISPR/Cas9 structures and mechanisms. Annu. Rev. Biophys. 46, 505–529 (2017)
- Jiang W., Bikard D., Cox D., Zhang F., Marraffini L.A.: RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31, 233–239 (2013)
- Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E.: A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816–821 (2012)
- Johnson K.E., Bottero V., Flaherty S., Dutta S., Singh V.V., Chandran B.: IFI16 restricts HSV-1 replication by accumulating on the hsv-1 genome, repressing HSV-1 gene expression, and directly or indirectly modulating histone modifications. PLoS Pathog, 10, e1004503 (2014)
- Joyce M.G., Sankhala R.S., Chen W.H., Choe M., Bai, H., Hajduczki A., Yan L., Sterling S.L., Peterson C.E., Green E.C.: A cryptic site of vulnerability on the receptor binding domain of the SARS-CoV-2 spike glycoprotein. bioRxiv. 3, 15 (2020)
- Kaminski R., Chen Y., Salkind J., Bella R., Young W.B., Ferrante P., Karn J., Malcolm T., Hu W., Khalili K.: Negative feedback regulation of HIV-1 by gene editing strategy. Sci. Rep. 6, 1–11 (2016)
- Kim S., Koo T., Jee H.G., Cho H.Y., Lee G., Lim D.G., Shin H.S., Kim J.S.: CRISPR RNAs trigger innate immune responses in human cells. Genome Res. 28, 367–373 (2018)
- Kimberland M.L., Hou W., Alfonso-Pecchio A., Wilson S., Rao Y., Zhang S., Lu Q.: Strategies for controlling CRISPR/ Cas9 off-target effects and biological variations in mammalian genome editing experiments. J. Biotechnol. 284, 91–101 (2018)
- Konermann S., Lotfy P., Brideau N.J., Oki J., Shokhirev M.N., Hsu P.D.: Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell, 173, 665–676 (2018)
- Kuba K., Imai Y., Ohto-Nakanishi T., Penninger J.M.: Trilogy of ACE2: A peptidase in the renin–angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacol. Ther. 128, 119–128 (2010)
- Lebbink R.J., De Jong D.C., Wolters F., Kruse E.M., Van Ham P.M., Wiertz E.J., Nijhuis M.: A combinational CRISPR/Cas9 gene-editing approach can halt HIV replication and prevent viral escape. Sci. Rep. 7, 1–10 (2017)
- Lenasi T., Contreras X., Peterlin B.M.: Transcriptional interference antagonizes proviral gene expression to promote HIV latency. Cell host microbe, 4, 123–133 (2008)
- Li C., Guan X., Du T., Jin W., Wu B., Liu Y., Wang P., Hu B., Griffin G.E., Shattock R.J.: Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9. J. Gen. Virol. 96, 2381–2393 (2015)
- Liang C., Wainberg M.A., Das A.T., Berkhout B.: CRISPR/Cas9: a double-edged sword when used to combat HIV infection. Retrovirology, 13, 1–4 (2016)
- Liao H.K., Gu Y., Diaz A., Marlett J., Takahashi Y., Li M., Suzuki K., Xu R., Hishida T., Chang C.J.: Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat. Commun. 6, 1–10 (2015)
- Liu J., Zheng X., Tong Q., Li W., Wang B., Sutter K., Trilling M., Lu M., Dittmer U., Yang D.: Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J. Med. Virol. 92, 491–494 (2020)
- Liu M., Rehman S., Tang X., Gu K., Fan Q., Chen D., Ma W.: Methodologies for improving HDR efficiency. Front. Genet. 9, 691 (2019)
- Liu Z., Torresilla C., Xiao Y., Nguyen P.T., Caté C., Barbosa K., Rassart É., Cen S., Bourgault S., Barbeau B.: HIV-1 antisense protein of different clades induces autophagy and associates with the autophagy factor p62. J. Virol. 93, e01757 (2019)
- Maeder M.L., Gersbach C.A.: Genome-editing technologies for gene and cell therapy. Mol. Ther. 24, 430–446 (2016)
- Makarova K.S., Aravind L., Wolf Y.I., Koonin E.V.: Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol. Direct, 6, 1–27 (2011)
- Marraffini L.A., Sontheimer E.J.: Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature, 463, 568–571 (2010)
- Mei Y., Wang Y., Chen H., Sun Z.S., Ju X.D.: Recent progress in CRISPR/Cas9 technology. J. Genet. Genomics, 43, 63–75 (2016)
- Ming S., Tian-Rui X., Ce-Shi C.: The big bang of genome editing technology: development and application of the CRISPR/Cas9 system in disease animal models. Zool. Res. 37, 191 (2016)
- Mocarski E., Shenk T., Griffiths P.D., Pass R.: Cytomegaloviruses. Fields Virology: Sixth Edition, 1, 1960–2014 (2013)
- Nalawansha D.A., Samarasinghe K.T.: Double-barreled CRISPR technology as a novel treatment strategy for COVID-19. ACS Pharmacol. Transl. Sci. 3, 790–800 (2020)
- Narasipura S.D., Kim S., Al-Harthi L.: Epigenetic regulation of HIV-1 latency in astrocytes. J. Virol. 88, 3031–3038 (2014)
- Nath A.: Eradication of human immunodeficiency virus from brain reservoirs. J. NeuroVirology, 21, 227–234 (2015)
- Nguyen T.M., Zhang Y., Pandolfi P.P.: Virus against virus: a potential treatment for 2019-nCov (SARS-CoV-2) and other RNA viruses. Cell Res. 30, 189–190 (2020)
- Nicoll M.P., Proença J.T., Efstathiou S.: The molecular basis of herpes simplex virus latency. FEMS Microbiol. Rev. 36, 684–705 (2012)
- Nyamweya S., Hegedus A., Jaye A., Rowland-Jones S., Flanagan K.L., Macallan D.C.: Comparing HIV-1 and HIV-2 infection: Lessons for viral immunopathogenesis. Rev. Med. Virol. 23, 221–240 (2013)
- Panno S., Matić S., Tiberini A., Caruso A.G., Bella P., Torta L., Stassi R., Davino S.: Loop mediated isothermal amplification: principles and applications in plant virology. Plants, 9, 461 (2020)
- Park R.J., Wang T., Koundakjian D., Hultquist J.F., Lamothe-Molina P., Monel B., Schumann K., Yu H., Krupzcak K.M., Garcia-Beltran W.: A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors. Nat. Genet. 49, 193–203 (2017)
- Pearson T., Shultz L.D., Miller D., King M., Laning J., Fodor W., Cuthbert A., Burzenski L., Gott B., Lyons B.: Non-obese diabetic-recombination activating gene-1 (NOD-Rag 1 null) interleukin (IL)-2 receptor common gamma chain (IL 2 rγ null) null mice: a radioresistant model for human lymphohaematopoietic engraftment. Clin. Exp. Immunol. 154, 270–284 (2008)
- Pellet P.E., Roizmann B.: Herpesviridae. Fields virology, 1, 1802–1822 (2013)
- Perlman S., Netland J.: Coronaviruses post-SARS: update on replication and pathogenesis. Nat. Rev. Microbiol. 7, 439–450 (2009)
- Rappuoli R.: Glycoconjugate vaccines: Principles and mechanisms Sci. Transl. Med. 10, 456 (2018)
- Rauch J.N. & Valois E. et al.: A scalable, easy-to-deploy protocol for Cas13-based detection of SARS-CoV-2 genetic material. J. Clin. Microbiol. 59, 4 (2021)
- Rice G.I., Thomas D.A., Grant P.J., Turner A.J., Hooper N.M.: Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem. J. 383, 45–51 (2004)
- Roehm P., Shekarabi M., Wollebo H., Bellizzi A., He L., Salkind J., Khalili K.: Inhibition of HSV-1 replication by gene editing strategy. Sci. Rep. 6, 23146 (2016)
- Roizmann B., Knipe D.M., Whitley R.: Herpes simplex viruses. Fields virology, 1, 1823–1897 (2013)
- Ruelas D.S., Chan J.K., Oh E., Heidersbach A.J., Hebbeler A.M., Chavez L., Verdin E., Rape M., Greene W.C.: MicroRNA-155 reinforces HIV latency. J. Biol. Chem. 290, 13736–13748 (2015)
- Russell T.A., Stefanovic T., Tscharke D.C.: Engineering herpes simplex viruses by infection–transfection methods including recombination site targeting by CRISPR/Cas9 nucleases. J. Virol. Methods. 213, 18–25 (2015)
- Safari F., Afarid M., Rastegari B., Haghighi A.B., Barekati-Mowahed M., Behbahani A.B.: CRISPR systems: Novel approaches for detection and combating COVID-19. Virus Res. 294, 198282 (2021)
- Siddell S.G., Walker P.J., Lefkowitz E.J., Mushegian A.R., Adams M.J., Dutilh B.E., Gorbalenya A.E., Harrach B., Harrison R.L., Junglen S.: Additional changes to taxonomy ratified in a special vote by the International Committee on Taxonomy of Viruses. Arch. Virol. 164, 943–946 (2019)
- Siliciano J.D., Kajdas J., Finzi D., Quinn T.C., Chadwick K., Margolick J.B., Kovacs C., Gange S.J., Siliciano R.F.: Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nature med. 9, 727–728 (2003)
- Simmons G., Reeves J.D., Rennekamp A.J., Amberg S.M., Piefer A.J., Bates P.: Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc. Natl. Acad. Sci. 101, 4240–4245 (2004)
- Smith P.D., Meng G., Salazar-Gonzalez J.F., Shaw G.M.: Macrophage HIV-1 infection and the gastrointestinal tract reservoir. J. Leukoc. Biol. 74, 642–649 (2003)
- Song Z., Xu Y., Bao L., Zhang L., Yu P., Qu Y., Zhu H., Zhao W., Han Y., Qin C.: From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses, 11, 59 (2019)
- Stern-Ginossar N., Weisburd B., Michalski A., Le V.T.K., Hein M.Y., Huang S.X., Ma M., Shen B., Qian S.B., Hengel H.: Decoding human cytomegalovirus. Science, 338, 1088–1093 (2012)
- Strong A., Musunuru K.: Genome editing in cardiovascular diseases. Nature Rev. Cardiol. 14, 11 (2017)
- Su S., Wong G., Shi W., Liu J., Lai A.C., Zhou J., Liu W., Bi Y., Gao G.F.: Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends microbiol. 24, 490–502 (2016)
- Sunshine S. & Kirchner R. et al.: HIV integration site analysis of cellular models of HIV latency with a probe-enriched next-generation sequencing assay. J. Virol. 90, 4511–4519 (2016)
- Tanaka P. & Santos J. et al.: A Crispr-Cas9 system designed to introduce point mutations into the human ACE2 gene to weaken the interaction of the ACE2 receptor with the SARS-CoV-2 S protein. Preprints.org. 1, 2020050134 (2020)
- van Boheemen S. & de Graaf M. et al.: Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio, 3, e00473 (2012)
- Van Der Oost J., Westra E.R., Jackson R.N., Wiedenheft B.: Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat. Rev. Microbiol. 12, 479–492 (2014)
- van Diemen F.R., Kruse E.M., Hooykaas M.J., Bruggeling C.E., Schürch A.C., van Ham P.M., Imhof S.M., Nijhuis M., Wiertz E.J., Lebbink R.J.: CRISPR/Cas9-mediated genome editing of herpesviruses limits productive and latent infections. PLoS pathog. 12, e1005701 (2016)
- van Diemen F.R., Lebbink R.J.: CRISPR/Cas9, a powerful tool to target human herpesviruses. Cell. Microbiol. 19, e12694 (2017)
- Verheyen J. & Thielen A. et al.: Rapid rebound of a preexisting CXCR4-tropic human immunodeficiency virus variant after allogeneic transplantation with CCR5 Δ32 homozygous stem cells. Clin. Infect. Dis. 68, 684–687 (2019)
- von Eije K.J., Ter Brake O., Berkhout B.: Human immunodeficiency virus type 1 escape is restricted when conserved genome sequences are targeted by RNA interference. J. Virol. 82, 2895–2903 (2008)
- Wang D., Zhang F., Gao G.: CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors. Cell, 181, 136–150 (2020)
- Wang G., Zhao N., Berkhout B., Das A.T.: CRISPR-Cas9 can inhibit HIV-1 replication but NHEJ repair facilitates virus escape. Mol. Ther. 24, 522–526 (2016)
- Wang H., La Russa M., Qi L.S.: CRISPR/Cas9 in genome editing and beyond. Annu. Rev. Biochem. 85, 227–264 (2016)
- Wang H., Yang P., Liu K., Guo F., Zhang Y., Zhang G., Jiang C.: SARS coronavirus entry into host cells through a novel clathrin-and caveolae-independent endocytic pathway. Cell res. 18, 290–301 (2008)
- Wang J., Quake S.R.: RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection. Proc. Natl. Acad. Sci. 111: 13157–13162 (2014)
- Wright A.V., Nuñez J.K., Doudna J.A.: Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell, 164, 29–44 (2016)
- Wu A. & Peng Y. et al.: Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell host microbe, 27: 325–328 (2020)
- Wu F. & Zhao S. et al.: A new coronavirus associated with human respiratory disease in China. Nature, 579, 265–269 (2020)
- Xiang X., Qian K., Zhang Z., Lin F., Xie Y., Liu Y., Yang Z.: CRISPR-cas systems based molecular diagnostic tool for infectious diseases and emerging 2019 novel coronavirus (COVID-19) pneumonia. J. Drug Target. 28, 727–731 (2020)
- Xiong X., Chen M., Lim W.A., Zhao D., Qi L.S.: CRISPR/Cas9 for human genome engineering and disease research. Annu. Rev. Genomics Hum. Genet. 17, 131–154 (2016)
- Xu X., Fan S., Zhou J., Zhang, Y., Che Y., Cai, H., Wang L., Guo L., Liu L., Li Q.: The mutated tegument protein UL7 attenuates the virulence of herpes simplex virus 1 by reducing the modulation of α-4 gene transcription. Virol. J. 13, 1–12 (2016)
- Yan W.X., Chong S., Zhang H., Makarova K.S., Koonin E.V., Cheng D.R., Scott D.A.: Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein. Mol. Cell, 70, 327–339 (2018)
- Yang H., Gao P., Rajashankar K.R., Patel D.J.: PAM-dependent target DNA recognition and cleavage by C2c1 CRISPR-Cas endonuclease. Cell, 167, 1814–1828 (2016)
- Yang H., Ren S., Yu S., Pan H., Li T., Ge S., Zhang J., Xia N.: Methods favoring homology-directed repair choice in response to CRISPR/Cas9 induced-double strand breaks. Int. J. Mol. Sci. 21, 6461 (2020)
- Yuan M., Wu N.C., Zhu X., Lee C.C.D., So R.T., Lv H., Mok C.K., Wilson I.A.: A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science, 368, 630–633 (2020)
- Yuen K.S., Wang Z.M., Wong N.H.M., Zhang Z.Q., Cheng T.F., Lui W.Y., Chan C.P., Jin D.Y.: Suppression of Epstein-Barr virus DNA load in latently infected nasopharyngeal carcinoma cells by CRISPR/Cas9. Virus res. 244, 296–303 (2018)
- Zetsche B., Gootenberg J.S., Abudayyeh O.O., Slaymaker I.M., Makarova K.S., Essletzbichler P., Volz S.E., Joung J., Van Der Oost J., Regev A.: Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 163, 759–771 (2015)
- Zhang F., Abudayyeh O.O., Gootenberg J.S.: A protocol for detection of COVID-19 using CRISPR diagnostics. Howard Hughes Medical Institute, 1, 1–8 (2020)
- Zhou P. & Yang X.L. et al.: Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. BioRxiv, doi: 10.1101/2020.01.22.914952 (2020)
- Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R.: A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 38, 727–733 (2020)
- Zhu W., Lei R., Le Duff, Y., Li J., Guo F., Wainberg M.A., Liang C.: The CRISPR/Cas9 system inactivates latent HIV-1 proviral DNA. Retrovirology, 12, 1–7 (2015)
- Zhuang Q., Liu, S., Zhang X., Jiang W., Wang K., Wang S., Peng C., Hou G., Li J., Yu X.: Surveillance and taxonomic analysis of the coronavirus dominant in pigeons in China. Transbound. Emerg. Dis. 67, 1981–1990 (2020)