Have a personal or library account? Click to login
Dawne i Współczesne Metody Stabilizacji Wina Cover

Dawne i Współczesne Metody Stabilizacji Wina

Open Access
|Nov 2022

References

  1. Ağagündüz D., Şahin T.Ö., Ayten Ş., Yılmaz B., Güneşliol B.E., Russo P., Spano G., Özogul F.: Lactic acid bacteria as pro-technological, bioprotective and health-promoting cultures in the dairy food industry. <em>Food. Biosci.</em> <bold>47</bold>, 101617 (2022)
  2. Athinarayanan J., Periasamy V.S., Alsaif M.A., Al-Warthan A.A., Alshatwi A.A.: Presence of nanosilica (E551) in commercial food products: TNF-mediated oxidative stress and altered cell cycle progression in human lung fibroblast cells. <em>Cell Biol. Toxicol.</em> <bold>30</bold>, 89–100 (2014)
  3. Augustyniak A., Cendrowski K., Grygorcewicz B., Jabłońska J., Nawrotek P., Trukawka M., Mijowska E., Popowska M.: The response of Pseudomonas aeruginosa PAO1 to UV-activated titanium dioxide/silica nanotubes. <em>Int. J. Mol. Sci.</em> <bold>21</bold> (2020)
  4. Azzolini M., Tosi E., Veneri G., Zapparoli G.: Evaluating the efficacy of lysozyme against lactic acid bacteria under different winemaking scenarios. <em>South African J. of Enol. Vitic.</em> <bold>31</bold> (2016)
  5. Bağder Elmacı S., Gülgör G., Tokatlı M., Erten H., İşci A.,Özçelik F.: Effectiveness of chitosan against wine-related microorganisms. <em>Antonie Van Leeuwenhoek</em> <bold>107</bold>, 675–686 (2015)
  6. Barnard H., Dooley A.N., Areshian G., Gasparyan B., Faull K.F.: Chemical evidence for wine production around 4000 BCE in the Late Chalcolithic Near Eastern highlands. <em>J. Archaeol. Sci.</em> <bold>38</bold>, 977–984 (2011)
  7. Bartowsky E.J., Costello P.J., Villa A., Henschke P.A.: The chemical and sensorial effects of lysozyme addition to red and white wines over six months’ cellar storage. <em>Aust. J. Grape Wine Res.</em> <bold>10</bold>, 143–150 (2004)
  8. Batiuk S.D.: The fruits of migration: Understanding the ‘longue dureé’ and the socio-economic relations of the Early Transcaucasian Culture. <em>J. Anthropol. Archaeol.</em> <bold>32</bold>, 449–477 (2013)
  9. Behera S.S., Panda S.K.: Ethnic and industrial probiotic foods and beverages: efficacy and acceptance. <em>Curr. Opin. Food Sci.</em> <bold>32</bold>, 29–36 (2020)
  10. Benito S.: The Management of Compounds that influence human health in modern winemaking from an HACCP point of view. <em>Fermentation</em> <bold>5</bold>, 33 (2019)
  11. Berovic M., Berlot M., Kralj S., Makovec D.: A new method for the rapid separation of magnetized yeast in sparkling wine. <em>Biochem. Eng. J.</em> <bold>88</bold>, 77–84 (2014)
  12. Bordet F., Joran A., Klein G., Roullier-Gall C., Alexandre H.: Yeast-yeast interactions: mechanisms, methodologies and impact on composition. <em>Microorganisms</em> <bold>8</bold>, 600 (2020)
  13. Buja L.M.: The cell theory and cellular pathology: Discovery, refinements and applications fundamental to advances in biology and medicine. <em>Exp. Mol. Pathol.</em> <bold>121</bold>, 104660 (2021)
  14. Buja L.M.: The history, science, and art of wine and the case for health benefits: perspectives of an oenophilic cardiovascular pathologist. <em>Cardiovasc. Pathol.</em> <bold>60</bold>, 107446 (2022)
  15. Burello E., Worth A.P.: A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles. <em>Nanotoxicol.</em> <bold>5</bold>, 228–235 (2011)
  16. Campos F.M., Couto J.A., Hogg T.A.: Influence of phenolic acids on growth and inactivation of Oenococcus oeni and Lactobacillus hilgardii. <em>J. Appl. Microbiol.</em> <bold>94</bold>, 167–174 (2003)
  17. Capece A., Pietrafesa R., Siesto G., Romano P.: Biotechnological approach based on selected Saccharomyces cerevisiae starters for reducing the use of sulfur dioxide in wine. <em>Microorganisms</em> <bold>8</bold>, 738 (2020)
  18. Carboni G., Fancello F., Zara G., Zara S., Ruiu L., Marova I., Pinna G., Budroni M., Mannazzu I.: Production of a lyophilized ready-to-use yeast killer toxin with possible applications in the wine and food industries. <em>Int. J. Food. Microbiol.</em> <bold>335</bold>, 108883 (2020)
  19. Cavalieri D., Mcgovern P.E., Hartl D.L., Mortimer R., Polsinelli M.: Evidence for S. cerevisiae fermentation in ancient wine. <em>J. Mol. Evol.</em> <bold>57</bold>, 226–232 (2003)
  20. Chagas R., Monteiro S., Boavida Ferreira R.: Assessment of potential effects of common fining agents used for white wine protein stabilization. <em>Am. J. Enol. Vitic.</em> <bold>63</bold>, 574–578 (2012)
  21. Cheong Y.K., Calvo-Castro J., Ciric L., Edirisinghe M., Cloutman-Green E., Illangakoon U., Kang Q., Mahalingam S., Matharu R., Wilson R., Ren G.: Characterisation of the chemical composition and structural features of novel antimicrobial nanoparticles. <em>Nanomaterials</em> <bold>7</bold>, 1–16 (2017)
  22. Colangelo D., Torchio F., de Faveri D.M., Lambri M.: The use of chitosan as alternative to bentonite for wine fining: Effects on heat-stability, proteins, organic acids, colour, and volatile compouds in an aromatic white wine. <em>Food Chem.</em> <bold>264</bold>, 301–309 (2018)
  23. Comitini F., Capece A., Ciani M., Romano P.: New insights on the use of wine yeasts. <em>Curr. Opin. Food Sci.</em> <bold>13</bold>, 44–49 (2017)
  24. Costa A., Barata A., Malfeito-Ferreira M., Loureiro V.: Evaluation of the inhibitory effect of dimethyl dicarbonate (DMDC) against wine microorganisms. <em>Food Microbiol.</em> <bold>25</bold>, 422–427 (2008)
  25. Costanigro M., Appleby C., Menke S.D.: The wine headache: Consumer perceptions of sulfites and willingness to pay for non-sulfited wines. <em>Food Qual. Prefer.</em> <bold>31</bold>, 81–89 (2014)
  26. Cravero M.C.: Organic and biodynamic wines quality and characteristics: A review. <em>Food Chem.</em> <bold>295</bold>, 334–340 (2019)
  27. Delfini C., Cersosimo M., del Prete V., Strano M., Gaetano G., Pagliara A., Ambrò S.: Resistance screening essay of wine lactic acid bacteria on lysozyme: efficacy of lysozyme in unclarified grape musts. <em>J. Agric. Food Chem.</em> <bold>52</bold>, 1861–1866 (2004)
  28. Dietler M.: Archaeologies of colonialism: consumption, entanglement, and violence in ancient Mediterranean France. Univ of California Press, 2010
  29. Dietler M.: Alcohol: Anthropological/Archaeological Perspectives. <em>Annu. Rev. Anthropol.</em> <bold>35</bold>, 229–249 (2006)
  30. Dobiášová Z., Pazourek J., Havel J.: Simultaneous determination of trans-resveratrol and sorbic acid in wine by capillary zone electrophoresis. <em>Electrophoresis</em> <bold>23</bold>, 263–267 (2002)
  31. Dodd E.: The archaeology of wine production in roman and pre-roman Italy. <em>Am. J. Archaeol.</em> <bold>126</bold>, 443–480 (2022)
  32. Dušak P., Benčina M., Turk M., Bavčar D., Košmerl T., Berovič M., Makovec D.: Application of magneto-responsive Oenococcus oeni for the malolactic fermentation in wine. <em>Biochem. Eng. J.</em> <bold>110</bold>, 134–142 (2016)
  33. Elieh-Ali-Komi D., Hamblin M.R.: Chitin and chitosan: Production and application of versatile biomedical nanomaterials. <em>Int. J. Adv. Res. (Indore)</em> <bold>4</bold>, 411–427 (2016)
  34. Ferrer-Gallego R., Puxeu M., Martín L., Nart E., Hidalgo C., Andorrà I.: Microbiological, physical, and chemical procedures to elaborate high-quality SO<sub>2</sub>-free wines. W: Grapes and Wines – Advances in Production, Processing, Analysis and Valorization. InTech, 2018
  35. Gal J.: The discovery of biological enantioselectivity: Louis Pasteur and the fermentation of tartaric acid, 1857 – A review and analysis 150 yr later. <em>Chirality</em> <bold>20</bold>, 5–19 (2008)
  36. Gao Y.C., Zhang G., Krentz S., Darius S., Power J., Lagarde G.: Inhibition of spoilage lactic acid bacteria by lysozyme during wine alcoholic fermentation. <em>Aust. J. Grape. Wine Res.</em> <bold>8</bold>, 76–83 (2002)
  37. Garde-Cerdán T., Souza-da Costa B., Rubio-Bretón P., Pérez-Álvarez E.P.: Nanotechnology: recent advances in viticulture and enology. <em>J. Sci. Food Agric.</em> <bold>101</bold>, 6156–6166 (2021)
  38. Granchi L., Budroni M., Rauhut D., Zara G.: Wine Yeasts and Consumer Health. W: Yeasts in the Production of Wine. Springer, New York, 2019, s. 343–373
  39. Guerrero R.F., Cantos-Villar E.: Demonstrating the efficiency of sulphur dioxide replacements in wine: A parameter review. <em>Trends Food Sci. Technol.</em> <bold>42</bold>, 27–43 (2015)
  40. Harutyunyan M., Malfeito-Ferreira M.: The Rise of Wine among Ancient Civilizations across the Mediterranean Basin. <em>Heritage</em> <bold>5</bold>, 788–812 (2022)
  41. Howe P.A., Worobo R., Sacks G.L.: Conventional measurements of sulfur dioxide (SO<sub>2</sub>) in red wine overestimate SO<sub>2</sub> antimicrobial activity. <em>Am. J. Enol. Vitic.</em> <bold>69</bold>, 210–220 (2018)
  42. Jabłońska J., Dubrowska K., Augustyniak A., Wróbel R.J., Piz M., Cendrowski K., Rakoczy R.: The influence of nanomaterials on pyocyanin production by Pseudomonas aeruginosa. <em>Appl. Nanosci. (Switzerland)</em> <bold>12</bold>, 1929–1940 (2022)
  43. Kalkan Yıldırım H., Darıcı B.: Alternative methods of sulfur dioxide used in wine production. <em>J. Microbiol. Biotechnol. Food Sci.</em> <bold>9</bold>, 675–687 (2020)
  44. Lemire J. a, Harrison J.J., Turner R.J.: Antimicrobial activity of metals: mechanisms, molecular targets and applications. <em>Nat. Rev. Microbiol.</em> <bold>11</bold> 371–384 (2013)
  45. Liburdi K., Benucci I., Esti M.: Lysozyme in wine: an overview of current and future applications. <em>Compr. Rev. Food Sci. Food Saf.</em> <bold>13</bold>, 1062–1073 (2014)
  46. Lisanti M.T., Blaiotta G., Nioi C., Moio L.: Alternative methods to SO<sub>2</sub> for microbiological stabilization of wine. <em>Compr. Rev. Food Sci. Food Saf.</em> <bold>18</bold>, 455–479 (2019)
  47. Loira I., Morata A., Escott C., del Fresno J.M., Tesfaye W., Palomero F., Suárez-Lepe J.A.: Applications of nanotechnology in the winemaking process. <em>Eur. Food Res. Technol.</em> <bold>246</bold>, 1533–1541 (2020)
  48. Mamlouk D., Gullo M.: Acetic Acid Bacteria: Physiology and carbon sources oxidation. <em>Indian J. Microbiol.</em> <bold>53</bold>, 377–384 (2013)
  49. Mas A., Portillo M.C.: Strategies for microbiological control of the alcoholic fermentation in wines by exploiting the microbial terroir complexity: A mini-review. <em>Int. J. Food Microbiol.</em> <bold>367</bold>, 109592 (2022)
  50. Maya B. Sadan., Eckert H., i wsp.: Springer handbook of nanomaterials. Springer, 2013
  51. McGovern P.E.: Uncorking the past: the quest for wine, beer, and other alcoholic beverages. Univ. of California Press, 2009
  52. McGovern P.E.: Ancient Wine. Princeton University Press, Princeton 2013
  53. McGovern P.E., Glusker D.L., Exner L.J., Voigt M.M.: Neolithic resinated wine. <em>Nature</em> <bold>381</bold>, 480–481 (1996)
  54. McGovern P.E., Luley B.P., Rovira N., Mirzoian A., Callahan M.P., Smith K.E., Hall G.R., Davidson T., Henkin J.M.: Beginning of viniculture in France. <em>PNAS</em> <bold>110</bold>, 10147–10152 (2013)
  55. McGovern P.E., Mirzoian A., Hall G.R.: Ancient Egyptian herbal wines. <em>PNAS</em> <bold>106</bold>, 7361–7366 (2009)
  56. McGovern P., Jalabadze M., Batiuk S., Callahan M.P., Smith K.E., Hall G.R., Kvavadze E., Maghradze D., Rusishvili N., Bouby L., Failla O., Cola G., Mariani L., Boaretto E., Bacilieri R., i wsp.: Early Neolithic wine of Georgia in the South Caucasus. <em>PNAS</em> <bold>114</bold>, E10309–E10318 (2017)
  57. Mijowska K., Cendrowski K., Grygorcewicz B., Oszmiański J., Nawrotek P., Ochmian I., Zielińska B.: Preliminary study on the influence of UV-C irradiation on microorganism viability and polyphenol compounds content during winemaking of ‘Regent’ red grape cultivar. <em>Pol. J. Chem.Tech.</em> <bold>19</bold>, 130–137 (2017)
  58. Nardi T.: Microbial resources as a tool for enhancing sustainability in winemaking. <em>Microorganisms</em> <bold>8</bold>, 507 (2020)
  59. Nawrotek P., Augustyniak A.: Nanotechnologia w mikrobiologii – wybrane aspekty. <em>Post. Mikrobiol.</em> <bold>3</bold>, 275–282 (2015)
  60. Nieto-Rojo R., Luquin A., Ancín-Azpilicueta C.: Improvement of wine aromatic quality using mixtures of lysozyme and dimethyl dicarbonate, with low SO<sub>2</sub> concentration. <em>Food Addit. Contam. A.</em> <bold>2015</bold>, 1–11, (2015)
  61. Noble J., Sanchez I., Blondin B.: Identification of new Saccharomyces cerevisiae variants of the MET2 and SKP2 genes controlling the sulfur assimilation pathway and the production of undesirable sulfur compounds during alcoholic fermentation. <em>Microb. Cell Fact.</em> <bold>14</bold>, 68 (2015)
  62. Onetto C.A., Costello P.J., Kolouchova R., Jordans C., McCarthy J., Schmidt S.A.: Analysis of transcriptomic response to SO<sub>2</sub> by Oenococcus oeni growing in continuous culture. <em>Microbiol. Spectr.</em> <bold>9</bold> (2021)
  63. Pachnowska K., Cendrowski K., Stachurska X., Nawrotek P., Augustyniak A., Mijowska E.: Potential use of silica nanoparticles for the microbial stabilisation of wine: an in vitro study using oenococcus oeni as a model. <em>Foods</em> <bold>9</bold>, 1–16 (2020)
  64. Padilla B., Gil J. v., Manzanares P.: Past and Future of Non-Saccharomyces Yeasts: From spoilage microorganisms to biotechnological tools for improving wine aroma complexity. Front. Microbiol. <bold>7</bold> (2016)
  65. Papadopoulou C., Soulti K., Roussis I.G.: Potential antimicrobial activity of red and white wine phenolic extracts against strains of Staphylococcus aureus, Escherichia coli and Candida albicans. <em>Food Technol. Biotechnol.</em> <bold>43</bold>, 41–46 (2005)
  66. Pascal Ribéreau-Gayon, Denis Dubourdieu, Bernard Donèche, Aline Lonvaud: Handbook of enology, Volume 1: The microbiology of wine and vinifications. John Wiley &amp; Sons, 2006
  67. Patra J.K., Baek K.H.: Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effects. <em>Front. Microbiol.</em> <bold>8</bold>, 1–14 (2017)
  68. Peñas E., di Lorenzo C., Uberti F., Restani P.: Allergenic Proteins in Enology: A review on technological applications and safety aspects. <em>Molecules</em> <bold>20</bold>, 13144–13164 (2015)
  69. Petrova P., Ivanov I., Tsigoriyna L., Valcheva N., Vasileva E., Parvanova-Mancheva T., Arsov A., Petrov K.: Traditional bulgarian dairy products: ethnic foods with health benefits. <em>Microorganisms</em> <bold>9</bold>, 480 (2021)
  70. Pretorius I.S.: Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. <em>Yeast</em> <bold>16</bold>, 675–729 (2000)
  71. Quintela S., Villarán M.C., de Armentia I.L., Elejalde E.: Ochratoxin A removal from red wine by several oenological fining agents: bentonite, egg albumin, allergen-free adsorbents, chitin and chitosan. <em>Food Addit. Contam. A.</em> <bold>29</bold>, 1168–1174 (2012)
  72. Renouf V., Strehaiano P., Lonvaud-Funel A.: Effectiveness of dimethlydicarbonate to prevent Brettanomyces bruxellensis growth in wine. <em>Food Control</em> <bold>19</bold>, 208–216 (2008)
  73. Ribereau-Gayon P., Dubourdieu D., Doneche B., Lonvaud A.: The Microbiology of Wine and Vinifications. W: Handbook of Enology. John Wiley &amp; Sons Inc. Hoboken 2005
  74. Rodríguez H., Curiel J.A., Landete J.M., de las Rivas B., de Felipe F.L., Gómez-Cordovés C., Mancheño J.M., Muñoz R.: Food phenolics and lactic acid bacteria. <em>Int. J. Food Microbiol.</em> <bold>132</bold>, 79–90 (2009)
  75. Sacchi K.L., Visón L.F., Adams D.O.: A review of the effect of winemaking techniques on phenolic extraction in red wines. <em>Am. J. Enol. Vitic.</em> <bold>56</bold>, 197–205 (2005)
  76. Sagoo S., Board R., Roller S.: Chitosan inhibits growth of spoilage micro-organisms in chilled pork products. <em>Food Microbiol.</em> <bold>19</bold>, 175–182 (2002)
  77. Santos M.C., Nunes C., Saraiva J.A., Coimbra M.A.: Chemical and physical methodologies for the replacement/reduction of sulfur dioxide use during winemaking: review of their potentialities and limitations. <em>Eur. Food Res. Technol.</em> <bold>234</bold>, 1–12 (2012)
  78. Santos M.C., Nunes C., Saraiva J.A., Coimbra M.A.: Chemical and physical methodologies for the replacement/reduction of sulfur dioxide use during winemaking: review of their potentialities and limitations. <em>Eur. Food Res. Technol.</em> <bold>234</bold>, 1–12 (2012)
  79. Sikora P., Augustyniak A., Cendrowski K., Nawrotek P., Mijowska E.: Antimicrobial activity of Al<sub>2</sub>O<sub>3</sub>, CuO, Fe<sub>3</sub>O<sub>4</sub>, and ZnO nanoparticles in scope of their further application in cement-based building materials. <em>Nanomaterials</em> <bold>8</bold>, 212 (2018)
  80. Silva P., Cardoso H., Gerós H.: Studies on the wine spoilage capacity of Brettanomyces/Dekkera spp. <em>Am. J. Enol. Vitic.</em> <bold>55</bold> (2004)
  81. Silva V., Igrejas G., Falco V., Santos T.P., Torres C., Oliveira A.M.P., Pereira J.E., Amaral J.S., Poeta P.: Chemical composition, antioxidant and antimicrobial activity of phenolic compounds extracted from wine industry by-products. <em>Food Control.</em> <bold>92</bold>, 516–522 (2018)
  82. Simonin S., Roullier-Gall C., Ballester J., Schmitt-Kopplin P., Quintanilla-Casas B., Vichi S., Peyron D., Alexandre H., Tourdot-Maréchal R.: Bio-protection as an alternative to sulphites: impact on chemical and microbial characteristics of red wines. <em>Front. Microbiol.</em> <bold>11</bold> (2020)
  83. Sonni F., Cejudo Bastante M.J., Chinnici F., Natali N., Riponi C.: Replacement of sulfur dioxide by lysozyme and oenological tannins during fermentation: influence on volatile composition of white wines. <em>J. Sci. Food Agric.</em> <bold>89</bold>, 688–696 (2009)
  84. Staub C., Michel F., Bucher T., Siegrist M.: How do you perceive this wine? Comparing naturalness perceptions of Swiss and Australian consumers. <em>Food Qual. Prefer.</em> <bold>79</bold>, 103752 (2020)
  85. Stead D.: The effect of hydroxycinnamic acids and potassium sorbate on the growth of 11 strains of spoilage yeasts. <em>J. Appl. Bacteriol.</em> <bold>78</bold>, 82–87 (1995)
  86. Steels H., James S.A., Roberts I.N., Stratford M.: Sorbic acid resistance: the inoculum effect. <em>Yeast</em> <bold>16</bold>, 1173–1183 (2000)
  87. Stivala M.G., Villecco M.B., Enriz D., Aredes Fernández P.: Effect of phenolic compounds on viability of wine spoilage lactic acid bacteria. A structure-activity relationship study. <em>Am.J. Enol. Vitic.</em> <bold>68</bold>, 228–233 (2017)
  88. Suárez R., Suárez-Lepe J.A., Morata A., Calderón F.: The production of ethylphenols in wine by yeasts of the genera Brettanomyces and Dekkera: A review. <em>Food Chem.</em> <bold>102</bold>, 10–21 (2007)
  89. Tedesco F., Siesto G., Pietrafesa R., Romano P., Salvia R., Scieuzo C., Falabella P., Capece A.: Chemical methods for microbiological control of winemaking: An overview of current and future applications. <em>Beverages</em> <bold>8</bold>, 58 (2022)
  90. du Toit M., Pretorius I.S.: Microbial spoilage and preservation of wine: using weapons from nature’s own arsenal – a review. <em>South African J. of Enol. Vitic.</em> <bold>21</bold> (2019)
  91. du Toit W.J., Pretorius I.S., Lonvaud-Funel A.: The effect of sulphur dioxide and oxygen on the viability and culturability of a strain of Acetobacter pasteurianus and a strain of Brettanomyces bruxellensis isolated from wine. <em>J. Appl. Microbiol.</em> <bold>98</bold>, 862–871 (2005)
  92. Valera M.J., Sainz F., Mas A., Torija M.J.: Effect of chitosan and SO<sub>2</sub> on viability of Acetobacter strains in wine. <em>Int. J. Food Microbiol.</em> <bold>246</bold>, 1–4 (2017)
  93. Vestergaard M., Ingmer H.: Antibacterial and antifungal properties of resveratrol. <em>Int. J. Antimicrob. Agents</em> <bold>53</bold>, 716–723 (2019)
  94. Waterhouse A.L.: Wine Phenolics. <em>Ann. N. Y. Acad. Sci.</em> <bold>957</bold>, 21–36 (2002)
  95. Waterhouse A.L., Sacks G.L., Jeffery D.W.: Understanding Wine Chemistry. Wiley, 2016
  96. Weber P., Kratzin H., Brockow K., Ring J., Steinhart H., Paschke A.: Lysozyme in wine: A risk evaluation for consumers allergic to hen’s egg. <em>Mol. Nutr. Food Res.</em> <bold>53</bold>, 1469–1477 (2009)
  97. Xia E.Q., Deng G.F., Guo Y.J., Li H.B.: Biological activities of polyphenols from grapes. <em>Int. J. Mol. Sci.</em> <bold>11</bold>, 622–646 (2010)
  98. Zara G., Budroni M., Mannazzu I., Fancello F., Zara S.: Yeast biofilm in food realms: occurrence and control. <em>World J. Microbiol. Biotechnol.</em> <bold>36</bold> 134 (2020)
  99. Zara G., Nardi T.: Yeast metabolism and its exploitation in emerging winemaking trends: from sulfite tolerance to sulfite reduction. <em>Fermentation</em> <bold>7</bold>, 57 (2021)
  100. Zuehlke J.M., Glawe D.A., Edwards C.G.: Efficacy of dimethyl dicarbonate against yeasts associated with washington state grapes and wines. <em>J. Food Process. Preserv.</em> <bold>39</bold>, 1016–1026 (2015)
DOI: https://doi.org/10.2478/am-2022-024 | Journal eISSN: 2545-3149 | Journal ISSN: 0079-4252
Language: English, Polish
Page range: 235 - 245
Submitted on: Oct 1, 2022
Accepted on: Nov 1, 2022
Published on: Nov 30, 2022
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Kamila Pachnowska, Adrian Augustyniak, Jolanta Karakulska, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.