References
- Achor S., Aravis C., Heaney N., Odion E., Lin C.: Response of organic acid-mobilized heavy metals in soils to biochar application. Geoderma, 378, 114628 (2020)
- Ahile U.J., Wuana R.A., Itodo A.U., Sha’Ato R., Dantas R.F.: Stability of iron chelates during photo-Fenton process: The role of pH, hydroxyl radical attack and temperature. J. Water Process. Eng. 36, 101320 (2020)
- Amiri F., Mousavi S.M., Yaghmaei S.: Enhancement of bioleaching of a spent Ni/Mo hydroprocessing catalyst by Penicillium simplicissimum. Sep. Purif. Technol. 80, 566–576 (2011)
- Amiri F., Mousavi S.M., Yaghmaei S., Barati M.: Bioleaching kinetics of a spent refinery catalyst using Aspergillus niger at optimal conditions. Biochem. Eng. J. 67, 208–217 (2012)
- Amiri F., Yaghmaei S., Mousavi S.M.: Bioleaching of tungsten-rich spent hydrocracking catalyst using Penicillium simplicissimum. Bioresour. Technol. 102, 1567–1573 (2011)
- Anangono-Lara C.A.: Efficiency of use of organic acids in shrimp (In Spanish). Facultad de Ingeniería Marítima, Ciencias Biológicas, Oceánicas y Recursos Naturales de la Universidad de Guayaquil, Ecuador, 28.02.2014,
http://www.dspace.espol.edu.ec/handle/123456789/25104 (10.05.2020) - Anjum F., Shahid M., Akcil A.: Biohydrometallurgy techniques of low-grade ores: A review on black shale. Hydrometallurgy, 117–118, 1–12 (2012)
- Asghari I., Mousavi S.M.: Effects of key parameters in recycling of metals from petroleum refinery waste catalysts in bioleaching process. Rev. Environ. Sci. Bio. 13, 139–161 (2014).
- Ashiq A., Kulkarni J., Vithanage, M.: Hydrometallurgical recovery of metals from e-waste (in) Electronic Waste Management and Treatment Technology. Ed. M.N. Vara-Prasad, M. Vithanage, Elsevier, Amsterdam, p. 225–246 (2019)
- Bahaloo-Horeh N., Mousavi S.M.: Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus niger. Waste Manage. 60, 666–679 (2016)
- Bahaloo-Horeh N., Mousavi S.M., Baniasadi M.: Use of adapted metal tolerant Aspergillus niger to enhance bioleaching efficiency of valuable metals from spent lithium-ion mobile phone batteries. J. Clean. Prod. 197, 1546–1557 (2018)
- Baldevraj R.S.M., Jagadish R.S.: Incorporation of chemical antimicrobial agents into polymeric films for food packaging (in) Multifunctional and Nanoreinforced Polymers for Food Packaging, Ed. J.M. Lagarón, Woodhead Publishing, Cambridge, 2011, p. 368–420
- Banerjee R., Mohanty A., Chakravarty S., Chakladar S., Biswas P.:A single-step process to leach out rare earth elements from coal ash using organic carboxylic acids. Hydrometallurgy, 201, 105575 (2021)
- Beddows C.: Reference module in materials science and materials engineering, 11.06.2015,
https://doi.org/10.1016/B978-0-12-803581-8.03609-2 (10.05.2020) - Bergelin A., Van Hees P.A.W., Wahlberg O., Lundström U.S.: The acid-base properties of high and low molecular weight organic acids in soil solutions of podzolic soils. Geoderma, 94, 223–235 (2000)
- Bhargava S.K., Ram R., Pownceby M., Grocott S., Ring B., Tardio J., Jones L.: A review of acid leaching of uraninite. Hydrometallurgy, 151, 10–24 (2015)
- Biswas S., Bhattacharjee K.: Fungal assisted bioleaching process optimization and kinetics: Scenario for Ni and Co recovery from a lateritic chromite overburden. Sep. Purif. Technol. 135, 100–109 (2014)
- Cao Y., Zhang S., Zhong Q., Wang G., Xu X., Li T., Wang L., Jia Y., Li Y.: Feasibility of nanoscale zero-valent iron to enhance the removal efficiencies of heavy metals from polluted soils by organic acids. Ecotox. Environ. Safe. 162, 464–473 (2018)
- Clark J.: Making carboxylic acids by oxidation of primary alcohols or aldehydes. LibreTexts,
https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Supplemental_Modules_(Organic_Chemistry)/Carboxylic_Acids/Synthesis_of_Carboxylic_Acids/Making_Carboxylic_Acids_by_Oxidation_of_Primary_Alcohols_or_Aldehydes (10.07.2020) - Das S., Naik Deshavath N., Goud V.V., Dasu V.V.: Bioleaching of Al from spent fluid catalytic cracking catalyst using Aspergillus species. Biotechnol. Rep. 23, e00349 (2019)
- Deepatana A., Valix M.: Recovery of nickel and cobalt from organic acid complexes: Adsorption mechanisms of metal-organic complexes onto aminophosphonate chelating resin. J. Hazard. Mater. 137, 925–933 (2006)
- Deng X., Chai L., Yang Z., Tang C., Tong H., Yuan P.: Bioleaching of heavy metals from a contaminated soil using indigenous Penicillium chrysogenum strain F1. J. Hazard. Mater. 233–234, 25–32 (2012)
- Desmarais M., Pirade F., Zhang J., Rene E.R.: Biohydrometallurgical processes for the recovery of precious and base metals from waste electrical and electronic equipments: Current trends and perspectives. Bioresour. Technol. Rep. 11, 100526 (2020)
- Dev S., Sachan A., Dehghani F., Ghosh T., Briggs B.R., Aggarwal S.: Mechanisms of biological recovery of rare-earth elements from industrial and electronic wastes: A review. Chem. Eng. J. 397, 124596 (2020)
- Ericsson M., Löf O.: Mining’s contribution to national economies between 1996 and 2016. Miner. Econ. 32, 223–250 (2019)
- Esmaeili M., Rastegar S.O., Beigzadeh R., Gu T.: Ultrasound-assisted leaching of 0pent lithium ion batteries by natural organic acids and H2O2. Chemosphere, 254, 126670 (2020)
- Fan B., Chen X., Zhou T., Zhang J., Xu B.: A sustainable process for the recovery of valuable metals from spent lithium-ion batteries. Waste Manage. Res. 34, 474–481 (2016)
- Faraji F., Golmohammadzadeh R., Rashchi F., Alimardani N.: Fungal bioleaching of WPCBs using Aspergillus niger: Observation, optimization and kinetics. J. Environ. Manage. 217, 775–787 (2018)
- Farid M., Ali S., Rizwan M., Ali Q., Abbas F., Bukhari S.A.H., Saeed R., Wu L.: Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants. Ecotox. Environ. Safe. 145, 90–102 (2017)
- Fathollahzadeh H., Becker T., Eksteen J.J., Kaksonen A.H., Watkin E.L.J.: Microbial contact enhances bioleaching of rare earth elements. Bioresour. Technol. Rep. 3, 102–108 (2018)
- Fathollahzadeh H., Eksteen J.J., Kaksonen A.H., Watkin, E.L.J.: Role of microorganisms in bioleaching of rare earth elements from primary and secondary resources. Appl. Microbiol. Biot. 103, 1043–1057 (2019)
- Fayed T.A., Gaber M., El-Nahass M.N., Diab H.A., El-Gamil M.M.: Synthesis, Structural characterization, thermal, molecular modeling and biological studies of chalcone and Cr(III), Mn(II), Cu(II), Zn(II) and Cd(II) chelates. J. Mol. Struct. 1221, 128742 (2020)
- Fernandes G.W., Ribeiro S.P.: Deadly conflicts: Mining, people, and conservation. Perspect. Ecol. Conserv. 15, 141–144 (2017)
- French Agency for Food, Environmental and Occupational Health Safety (ANSES): Analysis of the most appropriate risk management option (RMOA) for tributyl O-acetylcitrate (ATBC),
https://echa.europa.eu/documents/10162/29c7b3b8-f40c-64b2-8b55-053117cd599f (15.11.2020) - Fu Y., He Y., Chen H., Ye C., Lu Q., Li R., Xie W., Wang J.: Effective leaching and extraction of valuable metals from electrode material of spent lithium-ion batteries using mixed organic acids leachant. J. Ind. Eng. Chem. 79, 154–162 (2019)
- Gálan-Wong L.J., Delgado-Licón E., Medrano-Trujillo H.A., Medrano-Roldán H.: Financial Biotechnology (In Spanish). Instituto Tecnológico de Durango, Durango, 2013
- Gao W., Song J., Cao H., Lin X., Zhang X., Zheng X., Zhang Y., Sun Z.: Selective recovery of valuable metals from spent lithium-ion batteries – Process development and kinetics evaluation. J. Clean. Prod. 178, 833–845 (2018)
- Geng H., Wang F., Yan C., Tian Z., Chen H., Zhou B., Yuan R., Yao J.: Leaching behavior of metals from iron tailings under varying pH and low-molecular-weight organic acids. J. Hazard. Mater. 383, 121136 (2020)
- Ghorbani Y., Montenegro M.R.: Leaching behaviour and the solution consumption of uranium-vanadium ore in alkali carbonate-bicarbonate column leaching. Hydrometallurgy, 161, 127–137 (2016)
- Gómez-Ramírez M., Rojas-Avelizapa N.G., Hernández-Gama R., Tenorio-Sánchez S.A., López-Villegas E.O.: Potential use of Bacillus genera for metals removal from spent catalysts. J. Environ. Sci. Heal. A, 54, 701–710 (2019)
- Gu T., Rastegar S.O., Mousavi S.M., Li M., Zhou M.: Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge. Bioresource Technol. 261, 428–440 (2018)
- Haldar S.K.: Mineral Processing (in) Mineral Exploration, Ed. S.K. Haldar, Elsevier, Ámsterdam, p. 1–21 (2013)
- Herrick S.S.: Alcoholic beverages. JAMA-J Am. Med. Assoc. 8, 416–419 (1898)
- Hopfe S., Flemming K., Lehmann F., Möckel R., Kutschke S., Pollmann K.: Leaching of rare earth elements from fluorescent powder using the tea fungus Kombucha. Waste Manage. 62, 211–221 (2017)
- Horeh N.B., Mousavi S.M., Shojaosadati S.A.: Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus Niger. J. Power Sources, 320, 257–266 (2016)
- Hosseini Nasab M., Noaparast M., Abdollahi H., Amoozegar M.A.: Indirect bioleaching of Co and Ni from iron rich lateriteore, using metabolic carboxylic acids generated by P. putida, P. koreensis, P. bilaji and A. niger. Hydrometallurgy, 193, 105309 (2020)
- Huang K., Inoue K., Harada H., Kawakita H., Ohto K.: Leaching of heavy metals by citric acid from fly ash generated in municipal waste incineration plants. J. Mater. Cycles Waste, 13, 118–126 (2011)
- Huggins F.E., Shah N., Huffman G.P., Kolker A., Crowley S., Palmer C.A., Finkelman R.B.: Mode of occurrence of chromium in four US coals. Fuel Process. Technol. 63, 79–92 (2000)
- Ilyas S., Chi R., Lee J.C., Bhatti H.N.: One step bioleaching of sulphide ore with low concentration of arsenic by Aspergillus niger and taguchi orthogonal array optimization. Chinese J. of Chem. Eng. 20, 923–929 (2012)
- Jadhav U.U., Hocheng H.: A review of recovery of metals from industrial waste. J. Achiev. Mater. Manuf. Eng. 54, 159–167 (2012)
- Ji B., Li Q., Zhang W.: Leaching recovery of rare earth elements from calcination product of a coal coarse refuse using organic acids. J. Rare Earth. DOI: 10.1016/j.jre.2020.11.021 (2020)
- Kim R., Cho H., Han K.N., Kim K., Mun M.: Optimization of acid leaching of rare-earth elements from mongolian apatite-based ore. Minerals, 6, 63 (2016)
- Laurence D.: Establishing a sustainable mining operation: An overview. J. Clean. Prod. 19, 278–284 (2011)
- Li L., Fan E., Guan Y., Zhang X., Xue Q., Wei L., Wu F., Chen R.: Sustainable Recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system. ACS Sustain. Chem. Eng. 5, 5224–5233 (2017)
- Li L., Ge J., Wu F., Chen R., Chen S., Wu B.: Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant. J. Hazard. Mater. 176, 288–293 (2010)
- Liaud N., Giniés C., Navarro D., Fabre N., Crapart S., Gimbert I.H., Levasseur A., Raouche S., Sigoillot J.C.: Exploring fungal biodiversity: organic acid production by 66 strains of filamentous fungi. Fungal Biol. Biotechnol. 1, 1–10 (2014)
- Ma E.: Recovery of waste printed circuit boards through pyrometallurgy (in) Electronic Waste Management and Treatment Technology, Ed. M.J. Vara-Prasad, M. Vithanage, Elsevier, Amsterdam, p. 247–267 (2019)
- Mafi Gholami R., Mousavi S.M., Borghei S.M.: Process optimization and modeling of heavy metals extraction from a molybdenum rich spent catalyst by Aspergillus niger using response surface methodology. J. Ind. Eng. Chem. 18, 218–224 (2012)
- Mazurek K.: Recovery of vanadium, potassium and iron from a spent vanadium catalyst by oxalic acid solution leaching, precipitation and ion exchange processes. Hydrometallurgy, 134–135, 26–31 (2013)
- Meshram P., Mishra A., Abhilash, Sahu R.: Environmental impact of spent lithium ion batteries and green recycling perspectives by organic acids – A review. Chemosphere, 242, 125291 (2020)
- Minerals Council of Australia: 30 things produced by the Minerals Council of Australia,
https://www.minerals.org.au/sites/default/files/30%20Things.pdf (12.01.2021) - Min-Ji K., Ja-Yeon S., Yong-Seok C., Gyu-Hyeok K.: Bioleaching of spent Zn-Mn or Ni-Cd batteries by Aspergillus species. Waste Manage. 51, 168–173 (2016)
- Mishra D., Kim D., Ahn J., Rhee Y.: Bioleaching: A microbial process of metal recovery; A review. Met. Mater. Int. 11, 249–256 (2005)
- Mishra S.K., Mishra P.: Do adverse ecological consequences cause resistance against land acquisition? The experience of mining regions in Odisha, India. Extr. Ind. Soc. 4, 140–150 (2016)
- Mohanty S., Ghosh S., Nayak S., Das A.P.: Bioleaching of manganese by Aspergillus sp. isolated from mining deposits. Chemosphere, 172, 302–309 (2017)
- Mouna H.M., Baral S.S.: A bio-hydrometallurgical approach towards leaching of lanthanum from the spent fluid catalytic cracking catalyst using Aspergillus niger. Hydrometallurgy, 184, 175–182 (2019)
- Musariri B., Akdogan G., Dorfling C., Bradshaw S.: Evaluating organic acids as alternative leaching reagents for metal recovery from lithium ion batteries. Miner. Eng. 137, 108–117 (2019)
- Naraian R., Kumari S.: Microbial production of organic acids. Prog. Ind. M. 33, 249–272 (1995)
- Nayaka G.P., Zhang Y., Dong P., Wang D., Pai K.V., Manjanna J., Santhosh G., Duan J., Zhou Z., Xiao J.: Effective and environmentally friendly recycling process designed for LiCoO2 cathode powders of spent Li-ion batteries using mixture of mild organic acids. Waste Manage. 78, 51–57 (2018)
- Ning P., Meng Q., Dong P., Duan J., Xu M., Lin Y., Zhang Y.: Recycling of cathode material from spent lithium ion batteries using an ultrasound-assisted DL-malic acid leaching system. Waste Manage. 103, 52–60 (2020)
- Pathak A., Srichandan H., Kim D.J.: Fractionation behavior of metals (Al, Ni, V, and Mo) during bioleaching and chemical leaching of spent petroleum refinery catalyst. Water Air Soil Poll. 225, 1–10 (2014)
- Piri M., Sepehr E., Rengel Z.: Citric acid decreased and humic acid increased Zn sorption in soils. Geoderma, 341, 39–45 (2019)
- Qu Y., Lian B.: Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10. Bioresource Technol. 136, 16–23 (2013)
- Qu Y., Lian B., Mo B., Liu C.: Bioleaching of heavy metals from red mud using Aspergillus niger. Hydrometallurgy, 136, 71–77 (2013)
- Rasoulnia P., Mousavi S.M.: Maximization of organic acids production by Aspergillus niger in a bubble column bioreactor for V and Ni recovery enhancement from power plant residual ash in spent-medium bioleaching experiments. Bioresource Technol. 216, 729–736 (2016)
- Rasoulnia P., Mousavi S.M., Rastegar S.O., Azargoshasb H.: Fungal leaching of valuable metals from a power plant residual ash using Penicillium simplicissimum: Evaluation of thermal pretreatment and different bioleaching methods. Waste Manage. 52, 309–317 (2016)
- Reed D.W., Fujita Y., Daubaras D.L., Jiao Y., Thompson V.S.: Bioleaching of rare earth elements from waste phosphors and cracking catalysts. Hydrometallurgy, 166, 34–40 (2016)
- Rene E.R., Sahinkaya E., Lewis A., Lens P.N.L.: Sustainable heavy metal remediation. Springer, Switzerland, 2017
- Ricke S.C.: Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry Sci. 82, 632–639 (2003)
- Rivas V., Cendrero A., Hurtado M., Cabral M., Giménez J., Forte L., del Río L., Cantú M., Becker A.: Geomorphic consequences of urban development and mining activities; an analysis of study areas in Spain and Argentina. Geomorphology, 73, 185–206 (2006)
- Rojas-Avelizapa N.G., Otamendi-Valdez J., Gómez-Ramírez M. Metal leaching from a spent catalyst by Alternaria alternata. Mex. J. Biotechnol. 2, 221–231 (2017)
- Ruiz-Trujillo D.P.: Feasibility study about the use of organic acids as leaching agents (In Spanish). Universidad Tecnológica de Corregidora, México (17.06.2021)
- Rudke A.P., Sikora de Souza V.A., Mota dos Santos A.M., Freitas Xavier A. C., Rotunno Filho O.C., Martins J.A.: Impact of mining activities on areas of environmental protection in the southwest of the Amazon: A GIS- and remote sensing-based assessment. J. Environ. Manage. 263, 110392 (2020)
- Santos-Ruiz A.: Chelation phenomenom in the biochemistry of the oligoelements (In Spanish). El fenómeno de quelación en la bioquímica de los oligoelementos. Real Academia de Farmacia de Madrid,
https://xdoc.mx/preview/el-fenomeno-de-quelacion-en-la-bioquimica-de-los-oligoelementos-5fc9c4ad0c385 (17.06.2020) - Sauer M., Porro D., Mattanovich D., Branduardi P.: Microbial production of organic acids: expanding the markets. Trends Biotechnol. 26, 100–108 (2008)
- Shahid M., Pinelli E., Dumat C.: Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. J. Hazard. Mater. 219–220, 1–12 (2012)
- Srichandan H., Mohapatra R.K., Parhi P.K., Mishra S.: Bioleaching approach for extraction of metal values from secondary solid wastes: A critical review. Hydrometallurgy, 189, 105122 (2019)
- Taghipour M., Jalali M.: Heavy metal release from some industrial wastes: Influence of organic and inorganic acids, clay minerals, and nanoparticles. Pedosphere, 28, 70–83. (2018)
- Vakilchap F., Mousavi S.M., Shojaosadati S.A.: Role of Aspergillus niger in recovery enhancement of valuable metals from produced red mud in Bayer process. Bioresour. Technol. 218, 991–998 (2016)
- Walco, S.A.: All about chelates (In Spanish),
http://www.unipamplona.edu.co/unipamplona/portalIG/home_4/mod_virtuales/modulo2/6.pdf (17.06.2020) - Wang Y.D., Li G.Y., Ding D.X., Zhang Z.Y., Chen J., Hu N., Li L.: Column leaching of uranium ore with fungal metabolic products and uranium recovery by ion exchange. J. Radioanal. Nucl. Chem. 304, 1139–1144 (2015)
- Wu H.Y., Ting Y.P. Metal extraction from municipal solid waste (MSW) incinerator fly ash – Chemical leaching and fungal bioleaching. Enzyme Microb. Tech. 38, 839–847 (2006)
- Xia M., Bao P., Liu A., Wang M., Shen L., Yu R., Liu Y., Chen M., Li J., Wu X., Qiu G., Zeng W.: Bioleaching of low-grade waste printed circuit boards by mixed fungal culture and its community structure analysis. Resour. Conserv. Recy. 136, 267–275 (2018a)
- Xia M.C., Bao P., Liu A.J., Zhang S.S., Peng T.J., Shen L., Yu R.L., Wu X.L., Li J.K., Liu Y.D., Chen M., Qiu G.Z., Zeng W.M.: Isolation and identification of Penicillium chrysogenum strain Y5 and its copper extraction characterization from waste printed circuit boards. J. Biosci. Bioeng. 126, 78–87 (2018b)
- Xu T.J., Ramanathan T., Ting Y.P.: Bioleaching of incineration fly ash by Aspergillus niger – Precipitation of metallic salt crystals and morphological alteration of the fungus. Biotechnol. Rep. 3, 8–14 (2014)
- Xu T.J., Ting Y.P.: Optimisation on bioleaching of incinerator fly ash by Aspergillus niger – Use of central composite design. Enzyme Microb. Tech. 35, 444–454 (2004)
- Yang X., Liu L., Tan W., Liu C., Dang Z., Qiu G.: Remediation of heavy metal contaminated soils by organic acid extraction and electrochemical adsorption. Environ. Pollut. 264, 114745 (2020)
- Zeng X., Li J., Shen B.: Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid. J. Hazard. Mater. 295, 112–118 (2015)
- Zhou J., Zhu N., Liu H., Wu P., Zhang X., Zhong Z.: Recovery of gallium from waste light emitting diodes by oxalic acidic leaching. Resour. Conserv. Recy. 146, 366–372 (2019)
- Zhou Y., Huang X., Huang G., Bai X., Tang X., Li Y.: Cu and Fe bioleaching in low-grade chalcopyrite and bioleaching mechanisms using Penicillium janthinellum strain GXCR. Sheng Wu Gong Cheng Xue Bao, 24, 1993–2002 (2008)