References
- Abdel Ghafar MT, Gharib F, Abdel-Salam S et al. (2020) Role of serum metadherin mRNA expression in the diagnosis and prediction of survival in patients with colorectal cancer. Mol Biol Rep 47:2509–2519.
https://doi.org/10.1007/s11033-020-05334-5 - Abdel-Reheim MA, Zaafar D, El-Shoura EAM et al. (2024) Unlocking the miRNA-34a-5p/TGF-β and HMGB1/PI3K/Akt/mTOR crosstalk participate in the enhanced cardiac protection of liraglutide against isoproterenol-induced acute myocardial injury rat model. Int Immunopharmacol 127:111369.
https://doi.org/10.1016/j.intimp.2023.111369 - Bako KR, Mohammadnezhad M, Sika-Paotonu D et al. (2024) Diabetes cam: an objective methodology to study diabetes self-management. Am J Prev Med 66:909–913.
https://doi.org/10.1016/j.amepre.2023.12.016 - Chin T, Lee XE, Ng PY et al. (2023) The role of cellular senescence in skin aging and age-related skin pathologies. Front Physiol 14:1297637.
https://doi.org/10.3389/fphys.2023.1297637 - Daniali M, Nikfar S, Abdollahi M (2024) Advancements in pharmacotherapy options for treating diabetes in children and adolescents. Expert Rev Endocrinol Metab 19:37–47.
https://doi.org/10.1080/17446651.2023.2290491 - El-Osta A (2023) Transcriptional control of endothelial senescence and vascular repair. Circ Res 133:858–860.
https://doi.org/10.1161/CIRCRESAHA.123.323716 - Fathy MA, Anbaig A, Aljafil R et al. (2023) Effect of liraglutide on osteoporosis in a rat model of type 2 diabetes mellitus: a histological, immunohistochemical, and biochemical study. Microsc Microanal 29:2053–2067.
https://doi.org/10.1093/micmic/ozad102 - Guo T, Yan W, Cui X et al. (2023) Liraglutide attenuates type 2 diabetes mellitus-associated non-alcoholic fatty liver disease by activating AMPK/ACC signaling and inhibiting ferroptosis. Mol Med 29:132.
https://doi.org/10.1186/s10020-023-00721-7 - He W, Wang H, Zhao C et al. (2020) Role of liraglutide in brain repair promotion through Sirt1-mediated mitochondrial improvement in stroke. J Cell Physiol 235:2986–3001.
https://doi.org/10.1002/jcp.29204 - Inoue T, Inoguchi T, Sonoda N et al. (2015) GLP-1 analog liraglutide protects against cardiac steatosis, oxidative stress and apoptosis in streptozotocin-induced diabetic rats. Atherosclerosis 240:250–259.
https://doi.org/10.1016/j.atherosclerosis.2015.03.026 - Kalinin A, Zubkova E, Menshikov M (2023) Integrated stress response (ISR) pathway: unraveling its role in cellular senescence. Int J Mol Sci 24:17423.
https://doi.org/10.3390/ijms242417423 - Lee YS, Park YH, Hwang G et al. (2024) Cpne7 deficiency induces cellular senescence and premature aging of dental pulp. Aging Cell 23:e14061.
https://doi.org/10.1111/acel.14061 - Liang X, Wu S, Geng Z et al. (2021) LARP7 suppresses endothelial-to-mesenchymal transition by coupling with TRIM28. Circ Res 129:843–856.
https://doi.org/10.1161/CIRCRESAHA.121.319590 - Liao J, Fu L, Tai S et al. (2024) Essential oil from Fructus Alpiniae zerumbet ameliorates vascular endothelial cell senescence in diabetes by regulating PPAR-γ signalling: a 4D label-free quantitative proteomics and network pharmacology study. J Ethnopharmacol 321:117550.
https://doi.org/10.1016/j.jep.2023.117550 - Liu H, Ghosh S, Vaidya T et al. (2023) Activated cGAS/STING signaling elicits endothelial cell senescence in early diabetic retinopathy. JCI Insight 8:e168945.
https://doi.org/10.1172/jci.insight.168945 - Li Y, Wu Y, Ning Z et al. (2023) Echinacoside ameliorates 5-fluorouracil-induced endothelial injury and senescence through SIRT1 activation. Int Immunopharmacol 120:110279.
https://doi.org/10.1016/j.intimp.2023.110279 - Lord SM, Bahnson HT, Greenbaum CJ et al. (2023) Testing a new platform to screen disease-modifying therapy in type 1 diabetes. PLoS One 18:e0293268.
https://doi.org/10.1371/journal.pone.0293268 - Mennie AK, Moser BA, Nakamura TM (2018) LARP7-like protein Pof8 regulates telomerase assembly and poly(A)+TERRA expression in fission yeast. Nat Commun 29:586.
https://doi.org/10.1038/s41467-018-02874-0 - Miao L, Zhou C, Zhang H et al. (2023) Portulaca oleracea L. (Purslane) extract protects endothelial function by reducing endoplasmic reticulum stress and oxidative stress through AMPK activation in diabetic obese mice. Antioxidants 12:2132.
https://doi.org/10.3390/antiox12122132 - Molnár AÁ, Pásztor DT, Tarcza Z et al. (2023) Cells in atherosclerosis: focus on cellular senescence from basic science to clinical practice. Int J Mol Sci 24:17129.
https://doi.org/10.3390/ijms242417129 - O'Donnell C, Crilly S, O'Mahony A et al. (2024) Continuous positive airway pressure but not GLP1-mediated weight loss improves early cardiovascular disease in obstructive sleep apnea: a randomized proof-of-concept study. Ann Am Thorac Soc 21:464–473.
https://doi.org/10.1513/AnnalsATS.202309-821OC - Páez-Moscoso DJ, Ho DV, Pan L et al. (2022) A putative cap binding protein and the methyl phosphate capping enzyme Bin3/MePCE function in telomerase biogenesis. Nat Commun 13:1067.
https://doi.org/10.1038/s41467-022-28545-9 - Palanca A, Ampudia-Blasco FJ, Calderón JM et al. (2024) Comparison of GLP-1 receptor agonists and other glucose-lowering agents on cardiovascular outcomes in individuals with type 2 diabetes and obesity: a Spanish real-world population-based study. Diabetes Res Clin Pract 207:111071.
https://doi.org/10.1016/j.diabres.2023.111071 - Paneni F, Diaz Cañestro C, Libby P et al. (2017) The aging cardiovascular system: understanding it at the cellular and clinical levels. J Am Coll Cardiol 69:1952–1967.
https://doi.org/10.1016/j.jacc.2017.01.064 - Pulipaka S, Singuru G, Sahoo S et al. (2024) Therapeutic efficacies of mitochondria-targeted esculetin and metformin in the improvement of age-associated atherosclerosis via regulating AMPK activation. Geroscience 46:2391–2408.
https://doi.org/10.1007/s11357-023-01015-w - Ren X, Cui Z, Zhang Q et al. (2024) JunB condensation attenuates vascular endothelial damage under hyperglycemic condition. J Mol Cell Biol 15:mjad072.
https://doi.org/10.1093/jmcb/mjad072 - Santinha D, Vilaça A, Estronca L et al. (2024) Remodelling of the cardiac extracellular matrix proteome during chronological and pathological ageing. Mol Cell Proteomics 23:100706.
https://doi.org/10.1016/j.mcpro.2023.100706 - Savić R, Yang J, Koplev S et al. (2023) Integration of transcriptomes of senescent cell models with multi-tissue patient samples reveals reduced COL6A3 as an inducer of senescence. Cell Rep 42:113371.
https://doi.org/10.1016/j.celrep.2023.113371 - Sourris KC, Ding Y, Maxwell SS et al. (2023) Glucagon-like peptide-1 receptor signaling modifies the extent of diabetic kidney disease through dampening the receptor for advanced glycation end products-induced inflammation. Kidney Int 105:132–149.
https://doi.org/10.1016/j.kint.2023.09.029 - Thijssen DHJ, Bruno RM, van Mil ACCM et al. (2019) Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans. Eur Heart J 2019:2534–2547.
https://doi.org/10.1093/eurheartj/ehz350 - Wang Y, Sui Y, Niu Y et al. (2023) PBX1-SIRT1 positive feedback loop attenuates ROS-mediated HF-MSC senescence and apoptosis. Stem Cell Rev Rep 19:443–454.
https://doi.org/10.1007/s12015-022-10425-w - Wang L, Zhang X, Huang X et al. (2024) Homoplantaginin alleviates high glucose-induced vascular endothelial senescence by inhibiting mtDNA-cGAS-STING pathway via blunting DRP1-mitochondrial fission-VDAC1 axis. FASEB J 38:e70127.
https://doi.org/10.1096/fj.202401299RR - Yang Y, Liu S, Egloff S et al. (2022) Structural basis of RNA conformational switching in the transcriptional regulator 7SK RNP. Mol Cell 82:1724–1736.e1727.
https://doi.org/10.1016/j.molcel.2022.03.001 - Yan P, Li Z, Xiong J et al. (2021) LARP7 ameliorates cellular senescence and aging by allosterically enhancing SIRT1 deacetylase activity. Cell Rep 37:110038.
https://doi.org/10.1016/j.celrep.2021.110038 - Yu H, Zhang F, Yan P et al. (2021) LARP7 protects against heart failure by enhancing mitochondrial biogenesis. Circulation 143:2007–2022.
https://doi.org/10.1161/CIRCULATIONAHA.120.050812 - Zhang C, Gu L, Xie H et al. (2024) Glucose transport, transporters and metabolism in diabetic retinopathy. Biochim Biophys Acta Mol Basis Dis 1870:166995.
https://doi.org/10.1016/j.bbadis.2023.166995 - Zhu SL, Wang ML, He YT et al. (2022) Capsaicin ameliorates intermittent high glucose-mediated endothelial senescence via the TRPV1/SIRT1 pathway. Phytomedicine 100:154081.
https://doi.org/10.1016/j.phymed.2022.154081