Have a personal or library account? Click to login
High Expression of CIP2A Can Promote the Proliferation, Migration, and Epithelial-Mesenchymal Transition of Diffuse Large B-Cell Lymphoma Cells Cover

High Expression of CIP2A Can Promote the Proliferation, Migration, and Epithelial-Mesenchymal Transition of Diffuse Large B-Cell Lymphoma Cells

By: Caifang Zhao,  Xiang Weng,  Wei He and  Yanming Lei  
Open Access
|May 2025

References

  1. Akrida I, Papadaki H (2023) Adipokines and epithelial-mesenchymal transition (EMT) in cancer. Mol Cell Biochem 478:2419–2433. https://doi.org/10.1007/s11010-023-04670-x
  2. Chatterjee A, Paul S, Bisht B et al. (2022) Advances in targeting the WNT/β-catenin signaling pathway in cancer. Drug Discov Today 27:82–101. https://doi.org/10.1016/j.drudis.2021.07.007
  3. Che Y, Zhang H, Li H et al. (2023) CIP2A interacts with AKT1 to promote the malignant biological behaviors of oral squamous cell carcinoma by upregulating the GSK-3β/β-catenin pathway. Exp Ther Med 26:514. https://doi.org/10.3892/etm.2023.12213
  4. Gao H, Li Y, Lin T et al. (2020) Downregulation of CIP2A inhibits cancer cell proliferation and vascularization in renal clear cell carcinoma. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 164:196–202. https://doi.org/10.5507/bp.2019.031
  5. Hayat R, Manzoor M, Hussain A (2022) Wnt signaling pathway: A comprehensive review. Cell Biol Int 46:863–877. https://doi.org/10.1002/cbin.11797
  6. Huang Y, Hong W, Wei X (2022) The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol 15:129. https://doi.org/10.1186/s13045-022-01347-8
  7. Hu S, Ren S, Cai Y et al. (2022) Glycoprotein PTGDS promotes tumorigenesis of diffuse large B-cell lymphoma by MYH9-mediated regulation of Wnt-β-catenin-STAT3 signaling. Cell Death Differ 29:642–656. https://doi.org/10.1038/s41418-021-00880-2
  8. Jin W, Wang X (2022) PLAGL2 promotes the proliferation and migration of diffuse large B-cell lymphoma cells via Wnt/β-catenin pathway. Ann Clin Lab Sci 52:359–366. https://www.annclinlabsci.org/content/52/3/359.short. PMID: 38802155.
  9. Jonckheere S, Adams J, De Groote D et al. (2022) Epithelial-mesenchymal transition (EMT) as a therapeutic target. Cells Tissues Organs 211:157–182. https://doi.org/10.1159/000512218
  10. Kinowaki Y, Kurata M, Ishibashi S et al. (2018) Glutathione peroxidase 4 overexpression inhibits ROS-induced cell death in diffuse large B-cell lymphoma. Lab Invest 98:609–619. https://doi.org/10.1038/s41374-017-0008-1
  11. Kobayashi Y, Iwamoto R, He Z et al. (2025) Wnt family members regulating osteogenesis and their origins. J Bone Miner Metab 43:39–45. https://doi.org/10.1007/s00774-024-01554-y
  12. Laine A, Nagelli SG, Farrington C et al. (2021) CIP2A interacts with TopBP1 and drives basal-like breast cancer tumorigenesis. Cancer Res 81:4319–4331. https://doi.org/10.1158/0008-5472.CAN-20-3651
  13. Li Q, Li B, Lu CL et al. (2021) LncRNA LINC01857 promotes cell growth and diminishes apoptosis via PI3K/mTOR pathway and EMT process by regulating miR-141-3p/MAP4K4 axis in diffuse large B-cell lymphoma. Cancer Gene Ther 28:1046–1057. https://doi.org/10.1038/s41417-020-00267-4
  14. Li Y, Zhang PY, Yang ZW et al. (2020) TIMD4 exhibits regulatory capability on the proliferation and apoptosis of diffuse large B-cell lymphoma cells via the Wnt/β-catenin pathway. J Gene Med 22:e3186. https://doi.org/10.1002/jgm.3186
  15. Ma H, Luo X, Zhou P et al. (2021) USP21 promotes cell proliferation by maintaining the EZH2 level in diffuse large B-cell lymphoma. J Clin Lab Anal 35:e23693. https://doi.org/10.1002/jcla.23693
  16. Poletto S, Novo M, Paruzzo L et al. (2022) Treatment strategies for patients with diffuse large B-cell lymphoma. Cancer Treat Rev 110:102443. https://doi.org/10.1016/j.ctrv.2022.102443
  17. Schmitt A, Grimm M, Kreienkamp N et al. (2023) BRD4 inhibition sensitizes diffuse large B-cell lymphoma cells to ferroptosis. Blood 142:1143–1155. https://doi.org/10.1182/blood.2022019274
  18. Sehn LH, Gascoyne RD (2015) Diffuse large B-cell lymphoma: Optimizing outcome in the context of clinical and biologic heterogeneity. Blood 125:22–32. https://doi.org/10.1182/blood-2014-05-577189
  19. Sun X, Fang J, Ye F et al. (2022) Diffuse large B-cell lymphoma promotes endothelial-to-mesenchymal transition via WNT10A/beta-catenin/snail signaling. Front Oncol 12:871788. https://doi.org/10.3389/fonc.2022.871788
  20. Tian Y, Li L, Lin G et al. (2021) lncRNA SNHG14 promotes oncogenesis and immune evasion in diffuse large-B-cell lymphoma by sequestering miR-152-3p. Leuk Lymphoma 62:1574–1584. https://doi.org/10.1080/10428194.2021.1876866
  21. Walker MP, Stopford CM, Cederlund M et al. (2015) FOXP1 potentiates Wnt/β-catenin signaling in diffuse large B cell lymphoma. Sci Signal 8:ra12. https://doi.org/10.1126/scisignal.2005654
  22. Wang SS (2023) Epidemiology and etiology of diffuse large B-cell lymphoma. Semin Hematol 60:255–266. https://doi.org/10.1053/j.seminhematol.2023.11.004
  23. Wang Z, Ran X, Qian S et al. (2021) GPNMB promotes the progression of diffuse large B cell lymphoma via YAP1-mediated activation of the Wnt/β-catenin signaling pathway. Arch Biochem Biophys 710:108998. https://doi.org/10.1016/j.abb.2021.108998
  24. Wang Y, Tan J, Wu H et al. (2019) High glucose promotes epithelial-mesenchymal transition, migration and invasion in A20 murine Diffuse large B-cell lymphoma cells through increased expression of high mobility group AT-hook 2 (HMGA2). Med Sci Monit 25:3860–3868. https://doi.org/10.12659/MSM.916195
  25. Xing X, Liu M, Wang X et al. (2024) FKBP3 aggravates the malignant phenotype of diffuse large B-cell lymphoma by PARK7-mediated activation of Wnt/β-catenin signalling. J Cell Mol Med 28:e18041. https://doi.org/10.1111/jcmm.18041
  26. Xu P, Yao J, He J et al. (2016) CIP2A down regulation enhances the sensitivity of pancreatic cancer cells to gemcitabine. Oncotarget 7:14831–14840. https://doi.org/10.18632/oncotarget.7447
  27. Yu N, Zhang T, Zhao D et al. (2018) CIP2A is overexpressed in human endometrioid adenocarcinoma and regulates cell proliferation, invasion and apoptosis. Pathol Res Pract 214:233–239. https://doi.org/10.1016/j.prp.2017.11.011
Language: English
Submitted on: Feb 7, 2025
Accepted on: Apr 7, 2025
Published on: May 29, 2025
Published by: Hirszfeld Institute of Immunology and Experimental Therapy
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Caifang Zhao, Xiang Weng, Wei He, Yanming Lei, published by Hirszfeld Institute of Immunology and Experimental Therapy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.