Have a personal or library account? Click to login
Growing Challenges of Lung Infections with Non-tuberculous Mycobacteria in Immunocompromised Patients: Epidemiology and Treatment Cover

Growing Challenges of Lung Infections with Non-tuberculous Mycobacteria in Immunocompromised Patients: Epidemiology and Treatment

Open Access
|Mar 2025

References

  1. Abate G, Hamzabegovic F, Eickhoff CS et al. (2019) BCG vaccination induces M. avium and M. abscessus cross-protective immunity. Front Immunol 10:234. https://doi.org/10.3389/fimmu.2019.00234
  2. Abdalla CM, de Oliveira ZN, Sotto MN et al. (2009) Polymerase chain reaction compared to other laboratory findings and to clinical evaluation in the diagnosis of cutaneous tuberculosis and atypical mycobacteria skin infection. Int J Dermatol 48:27–35. https://doi.org/10.1111/j.1365-4632.2009.03807.x
  3. Abudaff NN, Beam E (2017) Mycobacterium arupense: A review article on an emerging potential pathogen in the Mycobacterium terrae complex. J Clin Tuberc Other Mycobact Dis 10:1–5. https://doi.org/10.1016/j.jctube.2017.11.001
  4. Ahmed I, Tiberi S, Farooqi J et al. (2020) Non-tuberculous mycobacterial infections – A neglected and emerging problem. Int J Infect Dis 92S:S46–S50. https://doi.org/10.1016/j.ijid.2020.02.022
  5. Akram SM, Rawla P (2024) Mycobacterium kansasii infection. StatPearls Publishing, Treasure Island, FL. https://www.ncbi.nlm.nih.gov/books/NBK430906/
  6. Antczak M, Dadura K, Lewandowska K, Dziadek J (2017) [Nontuberculous mycobacteria – Why treatment is so difficult?]. Kosmos 66:31–40.
  7. Aragaw WW, Cotroneo N, Stokes S et al. (2022) In vitro resistance against DNA gyrase inhibitor SPR719 in Mycobacterium avium and Mycobacterium abscessus. Microbiol Spectr 10:e0132121. https://doi.org/10.1128/spectrum.01321-21
  8. Arend SM, van Soolingen D, Ottenhoff TH (2009) Diagnosis and treatment of lung infection with nontuberculous mycobacteria. Curr Opin Pulm Med 15:201–208. https://doi.org/10.1097/MCP.0b013e3283292679
  9. Ariza-Heredia EJ, Dababneh AS, Wilhelm MP et al. (2011) Mycobacterium wolinskyi: A case series and review of the literature. Diagn Microbiol Infect Dis 71:421–427. https://doi.org/10.1016/j.diagmicrobio.2011.08.005
  10. Bakuła Z, Kościuch J, Safianowska A et al. (2018) Clinical, radiological and molecular features of Mycobacterium kansasii pulmonary disease. Respir Med 139:91–100. https://doi.org/10.1016/j.rmed.2018.05.007
  11. Bhanushali J, Jadhav U, Ghewade B et al. (2023) Unveiling the clinical diversity in nontuberculous mycobacteria (NTM) infections: A comprehensive review. Cureus 15:e48270. https://doi.org/10.7759/cureus.48270
  12. Blanc SM, Robinson D, Fahrenfeld NL (2021) Potential for nontuberculous mycobacteria proliferation in natural and engineered water systems due to climate change: A literature review. City Environ Interact 11:100070. https://doi.org/10.1016/j.cacint.2021.100070
  13. Boeck L, Burbaud S, Skwark M et al. (2022) Mycobacterium abscessus pathogenesis identified by phenogenomic analyses. Nat Microbiol 7:1431–1441. https://doi.org/10.1038/s41564-022-01204-x
  14. Brown BA, Springer B, Steingrube VA et al. (1999) Mycobacterium wolinskyi sp. nov. and Mycobacterium goodii sp. nov., two new rapidly growing species related to Mycobacterium smegmatis and associated with human wound infections: A cooperative study from the International Working Group on Mycobacterial Taxonomy. Int J Syst Bacteriol 49(Pt 4):1493–1511. https://doi.org/10.1099/00207713-49-4-1493
  15. Buchanan R, Agarwal A, Mathai E et al. (2020) Mycobacterium chimaera: A novel pathogen with potential risk to cardiac surgical patients. Natl Med J India 33:284–287. https://doi.org/10.4103/0970-258X.317473
  16. Chai J, Han X, Mei Q et al. (2022) Clinical characteristics and mortality of non-tuberculous mycobacterial infection in immunocompromised vs. immunocompetent hosts. Front Med (Lausanne) 9:884446. https://doi.org/10.3389/fmed.2022.884446
  17. Chan WW, Murray MC, Tang P et al. (2011) Mycobacterium heckeshornense peritonitis in a peritoneal dialysis patient: A case report and review of the literature. Clin Microbiol Infect 17:1262–1264. https://doi.org/10.1111/j.1469-0691.2010.03449
  18. Chin KL, Sarmiento ME, Alvarez-Cabrera N et al. (2020) Pulmonary non-tuberculous mycobacterial infections: Current state and future management. Eur J Clin Microbiol Infect Dis 39:799–826. https://doi.org/10.1007/s10096-019-03771-0
  19. Chotmongkol V, Kosallavat S, Sawanyawisuth K et al. (2024) Evaluation of seegeneanyplex MTB/NTM real-time detection assay for diagnosis of tuberculous meningitis. Orphanet J Rare Dis 19:7. https://doi.org/10.1186/s13023-023-03009-5
  20. Cloud JL, Meyer JJ, Pounder JI et al. (2006) Mycobacterium arupense sp. nov., a non-chromogenic bacterium isolated from clinical specimens. Int J Syst Evol Microbiol 56:1413–1418. https://doi.org/10.1099/ijs.0.64194-0
  21. Cooper SK, Ackart DF, Lanni F et al. (2024) Heterogeneity in immune cell composition is associated with Mycobacterium tuberculosis replication at the granuloma level. Front Immunol 15:1427472. https://doi.org/10.3389/fimmu.2024.1427472
  22. Cowman S, van Ingen J, Griffith DE et al. (2019) Non-tuberculous mycobacterial pulmonary disease. Eur Respir J 54:1900250. https://doi.org/10.1183/13993003.00250-2019
  23. Cronan MR (2022) In the thick of it: Formation of the tuberculous granuloma and its effects on host and therapeutic responses. Front Immunol 13:820134. https://doi.org/10.3389/fimmu.2022.820134
  24. Dahl VN, Mølhave M, Fløe A et al. (2022) Global trends of pulmonary infections with nontuberculous mycobacteria: A systematic review. Int J Infect Dis 125:120–131. https://doi.org/10.1016/j.ijid.2022.10.013
  25. Daley CL, Iaccarino JM, Lange C et al. (2020a) Treatment of nontuberculous mycobacterial pulmonary disease: An official ATS/ERS/ESCMID/IDSA clinical practice guideline. Clin Infect Dis 71:905–913. https://doi.org/10.1093/cid/ciaa1125
  26. Daley CL, Iaccarino JM, Lange C et al. (2020b) Treatment of nontuberculous mycobacterial pulmonary disease: An official ATS/ERS/ESCMID/IDSA clinical practice guideline. Clin Infect Dis 71:e1–e36. https://doi.org/10.1093/cid/ciaa241
  27. Daley CL, Iaccarino JM, Lange C et al. (2020c) Treatment of nontuberculous mycobacterial pulmonary disease: An official ATS/ERS/ESCMID/IDSA clinical practice guideline. Eur Respir J 56:2000535. https://doi.org/10.1183/13993003.00535-2020
  28. de Man TJ, Perry KA, Lawsin A et al. (2016) Draft genome sequence of Mycobacterium wolinskyi, a rapid-growing species of nontuberculous mycobacteria. Genome Announc 4:e138–e116. https://doi.org/10.1128/genomeA.00138-16
  29. Dedrick RM, Guerrero-Bustamante CA, Garlena RA et al. (2019) Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med 25:730–733. https://doi.org/10.1038/s41591-019-0437-z
  30. Degiacomi G, Sammartino JC, Chiarelli LR et al. (2019) Mycobacterium abscessus, an emerging and worrisome pathogen among cystic fibrosis patients. Int J Mol Sci 20:5868. https://doi.org/10.3390/ijms20235868
  31. Delghandi MR, El-Matbouli M, Menanteau-Ledouble S (2020) Mycobacteriosis and infections with non-tuberculous mycobacteria in aquatic organisms: A review. Microorganisms 8:1368. https://doi.org/10.3390/microorganisms8091368
  32. Desai AN, Hurtado R (2021) Nontuberculous mycobacterial infections. The Journal of the American Medical Association (JAMA) 325(15):1574. https://doi.org/10.1001/jama.2020.19062
  33. Dokic A, Peterson E, Arrieta-Ortiz ML et al. (2021) Mycobacterium abscessus biofilms produce an extracellular matrix and have a distinct mycolic acid profile. Cell Surf 7:100051. https://doi.org/10.1016/j.tcsw.2021.100051
  34. Etna MP, Giacomini E, Severa M et al. (2014) Pro- and anti-inflammatory cytokines in tuberculosis: A two-edged sword in TB pathogenesis. Semin Immunol 26:543–551. https://doi.org/10.1016/j.smim.2014.09.011
  35. Flume PA, Garcia BA, Wilson D et al. (2023) Inhaled nitric oxide for adults with pulmonary non-tuberculous mycobacterial infection. Respir Med 206:107069. https://doi.org/10.1016/j.rmed.2022.107069
  36. Fukushima K, Miki M, Matsumoto Y et al. (2020) The impact of adjuvant surgical treatment of nontuberculous mycobacterial pulmonary disease on prognosis and outcome. Respir Res 21:153. https://doi.org/10.1186/s12931-020-01420-1
  37. Gaudêncio M, Carvalho A, Bertão MI et al. (2021) Mycobacterium chelonae cutaneous infection: A challenge for an internist. Eur J Case Rep Intern Med 8:003013. https://doi.org/10.12890/2021_003013
  38. Gopalaswamy R, Shanmugam S, Mondal R et al. (2020) Of tuberculosis and non-tuberculous mycobacterial infections – A comparative analysis of epidemiology, diagnosis and treatment. J Biomed Sci 27:74. https://doi.org/10.1186/s12929-020-00667-6
  39. Griffith DE, Aksamit T, Brown-Elliott BA et al. (2007) An official ATS/IDSA statement: Diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 175:367–416. https://doi.org/10.1164/rccm.200604-571ST
  40. Gu Y, Nie W, Huang H et al. (2023) Non-tuberculous mycobacterial disease: Progress and advances in the development of novel candidate and repurposed drugs. Front Cell Infect Microbiol 13:1243457. https://doi.org/10.3389/fcimb.2023.1243457
  41. Guirado E, Schlesinger LS (2013) Modeling the Mycobacterium tuberculosis granuloma – The critical battlefield in host immunity and disease. Front Immunol 4:98. https://doi.org/10.3389/fimmu.2013.00098
  42. Guler R, Ozturk M, Sabeel S et al. (2021) Targeting molecular inflammatory pathways in granuloma as host-directed therapies for tuberculosis. Front Immunol 12:733853. https://doi.org/10.3389/fimmu.2021.733853
  43. Gunasingam N (2022) Morphology and pathological characteristics of mycobacteria. Mycobact Dis S4:005. https://doi.org/10.35248/2161-1068.22.S4.005
  44. Gutierrez C, Somoskovi A (2014) Human pathogenic mycobacteria. Ref Module Biomed Sci. Elsevier. https://doi.org/10.1016/B978-0-12-801238-3.00137-9
  45. Haworth CS, Banks J, Capstick T et al. (2017a) British Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax 72(Suppl. 2):ii1–ii64. https://doi.org/10.1136/thoraxjnl-2017-210927
  46. Haworth CS, Banks J, Capstick T et al. (2017b) British Thoracic Society Guideline for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). BMJ Open Respir Res 4:e000242. https://doi.org/10.1136/bmjresp-2017-000242
  47. Herdman AV, Steele JC Jr (2004) The new mycobacterial species – Emerging or newly distinguished pathogens. Clin Lab Med 24:651–690. https://doi.org/10.1016/j.cll.2004.05.011
  48. Hernández-Meneses M, González-Martin J, Agüero D et al. (2021) Hospital clínic of Barcelona infectious endocarditis team. Mycobacterium wolinskyi: A new non-tuberculous Mycobacterium associated with cardiovascular infections? Infect Dis Ther 10:1073–1080. https://doi.org/10.1007/s40121-021-00416-8
  49. Hisert KB, Ochoa A, Corley J et al. (2023) GM-CSF is essential for effective macrophage killing of nontuberculous mycobacteria. Am J Respir Crit Care Med 207:A4240. https://doi.org/10.1164/ajrccm-conference.2023.207.1
  50. Hoefsloot W, van Ingen J, Andrejak C et al. (2013) The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: An NTM-NET collaborative study. Eur Respir J 42:1604–1613. https://doi.org/10.1183/09031936.00149212
  51. Honda JR, Hess T, Carlson R et al. (2020) Nontuberculous mycobacteria show differential infectivity and use phospholipids to antagonize LL-37. Am J Respir Cell Mol Biol 62:354–363. https://doi.org/10.1165/rcmb.2018-0278OC
  52. Honda JR, Knight V, Chan ED (2015) Pathogenesis and risk factors for nontuberculous mycobacterial lung disease. Clin Chest Med 36:1–11. https://doi.org/10.1016/j.ccm.2014.10.001
  53. Horne D, Skerrett S (2019) Recent advances in nontuberculous mycobacterial lung infections. F1000Res 8:F1000. https://doi.org/10.12688/f1000research.20096.1
  54. Hoy SM (2021) Amikacin liposome inhalation suspension in refractory Mycobacterium avium complex lung disease: A profile of its use. Clin Drug Investig 41:405–412. https://doi.org/10.1007/s40261-021-01010-z
  55. Huang HL, Lu PL, Lee CH et al. (2020) Treatment of pulmonary disease caused by Mycobacterium kansasii. J Formos Med Assoc 119(Suppl. 1):S51–S57. https://doi.org/10.1016/j.jfma.2020.05.018
  56. Jamal F, Hammer MH (2022) Nontuberculous mycobacterial infections. Radiol Clin North Am 60:399–408. https://doi.org/10.1016/j.rcl.2022.01.012
  57. Johnson MM, Odell JA (2014) Nontuberculous mycobacterial pulmonary infections. J Thorac Dis 6:210–220. https://doi.org/10.3978/j.issn.2072-1439.2013.12.24
  58. Johnston JC, Chiang L, Elwood K (2014) Mycobacterium kansasii. Microbiol Spectr 5. J Thorac Dis 6(3):210–220. https://doi.org/10.3978/j.issn.2072-1439.2013.12.24
  59. Kambali S, Quinonez E, Sharifi A et al. (2021) Pulmonary nontuberculous mycobacterial disease in Florida and association with large-scale natural disasters. BMC Public Health 21:2058. https://doi.org/10.1186/s12889-021-12115-7
  60. Kim BG, Jhun BW, Kim H et al. (2022) Treatment outcomes of Mycobacterium avium complex pulmonary disease according to disease severity. Sci Rep 12:1970. https://doi.org/10.1038/s41598-022-06022-z
  61. Kim BJ, Hong SH, Yu HK et al. (2013) Mycobacterium parakoreense sp. nov., a slowly growing non-chromogenic species related to Mycobacterium koreense, isolated from a human clinical specimen. Int J Syst Evol Microbiol 63:2301–2308. https://doi.org/10.1099/ijs.0.045070-0
  62. Kim JY, Lee HW, Yim JJ et al. (2023) Outcomes of adjunctive surgery in patients with nontuberculous mycobacterial pulmonary disease: A systematic review and meta-analysis. Chest 163:763–777. https://doi.org/10.1016/j.chest.2022.09.037
  63. Kim JY, Park S, Park IK et al. (2021) Outcomes of adjunctive surgery for nontuberculous mycobacterial pulmonary disease. BMC Pulm Med 21:312. https://doi.org/10.1186/s12890-021-01679-0
  64. Koh WJ (2017) Nontuberculous mycobacteria-overview. Microbiol Spectr 5(1):TNMI7-0024-2016. https://doi.org/10.1128/microbiol-spec.tnmi7-0024-2016
  65. Koh WJ, Moon SM, Kim SY et al. (2017) Outcomes of Mycobacterium avium complex lung disease based on clinical phenotype. Eur Respir J 50:1602503. https://doi.org/10.1183/13993003.02503-2016
  66. Kumar K, Daley CL, Griffith DE et al. (2022) Management of Mycobacterium avium complex and Mycobacterium abscessus pulmonary disease: Therapeutic advances and emerging treatments. Eur Respir Rev 31:210212. https://doi.org/10.1183/16000617.0212-2021
  67. Kumar K, Ponnuswamy A, Capstick TG et al. (2024) Non-tuberculous mycobacterial pulmonary disease (NTM-PD): Epidemiology, diagnosis and multidisciplinary management. Clin Med 24:100017. https://doi.org/10.1016/j.clinme.2024.100017
  68. Kwak N, Hwang HW, Kim HJ et al. (2022) The association between Bacille Calmette-Guérin vaccination and nontuberculous mycobacterial pulmonary disease. J Korean Med Sci 37:e206. https://doi.org/10.3346/jkms.2022.37.e206
  69. Larsson LO, Polverino E, Hoefsloot W et al. (2017) Pulmonary disease by non-tuberculous mycobacteria – Clinical management, unmet needs and future perspectives. Expert Rev Respir Med 11:977–989. https://doi.org/10.1080/17476348.2017.1386563
  70. Laudone TW, Garner L, Kam CW et al. (2021) Novel therapies for treatment of resistant and refractory nontuberculous mycobacterial infections in patients with cystic fibrosis. Pediatr Pulmonol 56(Suppl. 1):S55–S68. https://doi.org/10.1002/ppul.24939
  71. Lee JY, Choi EH (2022) Skin infection caused by Mycobacterium abscessus in a healthy adult. J Mycol Infect 27:38–40. https://doi.org/10.17966/JMI.2022.27.2.38
  72. Li J, Zhan L, Qin C (2021) The double-sided effects of Mycobacterium bovis bacillus Calmette-Guérin vaccine. NPJ Vaccines 6:14. https://doi.org/10.1038/s41541-020-00278-0
  73. Loebinger MR (2017) Mycobacterium avium complex infection: Phenotypes and outcomes. Eur Respir J 50:1701380. https://doi.org/10.1183/13993003.01380-2017
  74. Loebinger MR, Quint JK, van der Laan R et al. (2023) Risk factors for nontuberculous mycobacterial pulmonary disease: A systematic literature review and meta-analysis. Chest 164:1115–1124. https://doi.org/10.1016/j.chest.2023.06.014
  75. Lopeman RC, Harrison J, Desai M et al. (2019) Mycobacterium abscessus: Environmental bacterium turned clinical nightmare. Microorganisms 7:90. https://doi.org/10.3390/microorganisms7030090
  76. Lu M, Fitzgerald D, Karpelowsky J et al. (2018) Surgery in nontuberculous mycobacteria pulmonary disease. Breathe (Sheff) 14:288–301. https://doi.org/10.1183/20734735.027218
  77. Meliefste HM, Mudde SE, Ammerman NC et al. (2024) A laboratory perspective on Mycobacterium abscessus biofilm culture, characterization and drug activity testing. Front Microbiol 15:1392606. https://doi.org/10.3389/fmicb.2024.1392606
  78. Mencarini J, Cresci C, Simonetti MT et al. (2017) Non-tuberculous mycobacteria: Epidemiological pattern in a reference laboratory and risk factors associated with pulmonary disease. Epidemiol Infect 145(3):515–522. https://doi.org/10.1017/S0950268816002521
  79. Mercaldo RA, Marshall JE, Cangelosi GA et al. (2023) Environmental risk of nontuberculous mycobacterial infection: Strategies for advancing methodology. Tuberculosis 139:102305. https://doi.org/10.1016/j.tube.2023.102305
  80. Moore M, Frerichs JB (1953) An unusual acid-fast infection of the knee with subcutaneous, abscess-like lesions of the gluteal region. J Investig Dermatol 20:133–169. https://doi.org/10.1038/jid.1953.18
  81. Moral MZ, Desai K, Arain AR et al. (2019) Mycobacterium abscessus-associated vertebral osteomyelitis in an immunocompetent patient: A rare case report and literature review. Spinal Cord Ser Cases 5:53. https://doi.org/10.1038/s41394-019-0197-5
  82. Morimoto K, Iwai K, Uchimura K et al. (2014) A steady increase in nontuberculous mycobacteriosis mortality and estimated prevalence in Japan. Ann Am Thorac Soc 11:1–8. https://doi.org/10.1513/AnnalsATS.201303-067OC
  83. Morimoto K, Nonaka M, Yamazaki Y et al. (2024) Amikacin liposome inhalation suspension for Mycobacterium avium complex pulmonary disease: A subgroup analysis of Japanese patients in the randomized, phase 3, CONVERT study. Respir Investig 62:284–290. https://doi.org/10.1016/j.resinv.2023.12.012
  84. Nair VR, Franco LH, Zacharia VM et al. (2016) Microfold cells actively translocate Mycobacterium tuberculosis to initiate infection. Cell Rep 16:1253–1258. https://doi.org/10.1016/j.celrep.2016.06.080
  85. Natanti A, Palpacelli M, Valsecchi M et al. (2021) Mycobacterium chimaera: A report of 2 new cases and literature review. Int J Legal Med 135:2667–2679. https://doi.org/10.1007/s00414-021-02630-y
  86. Ndlovu H, Marakalala MJ (2016) Granulomas and inflammation: Host-directed therapies for tuberculosis. Front Immunol 7:434. https://doi.org/10.3389/fimmu.2016.00434
  87. Nie W, Duan H, Huang H et al. (2014) Species identification of Mycobacterium abscessus subsp. abscessus and Mycobacterium abscessus subsp. bolletii using rpoB and hsp65, and susceptibility testing to eight antibiotics. Int J Infect Dis 25:170–174. https://doi.org/10.1016/j.ijid.2014.02.014
  88. Orujyan D, Narinyan W, Rangarajan S et al. (2022) Protective efficacy of BCG vaccine against Mycobacterium leprae and non-tuberculous mycobacterial infections. Vaccines (Basel) 10:390. https://doi.org/10.3390/vaccines10030390
  89. Park HE, Lee W, Choi S et al. (2022) Modulating macrophage function to reinforce host innate resistance against Mycobacterium avium complex infection. Front Immunol 13:931876. https://doi.org/10.3389/fimmu.2022.931876
  90. Parte AC (2014) LPSN – list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 42(Database issue): D613–D616. https://doi.org/10.1093/nar/gkt1111
  91. Pathak K, Hart S, Lande L (2022) Nontuberculous mycobacteria lung disease (NTM-LD): Current recommendations on diagnosis, treatment, and patient management. Int J Gen Med 15:7619–7629. https://doi.org/10.2147/IJGM.S272690
  92. Pennington KM, Vu A, Challener D et al. (2021) Approach to the diagnosis and treatment of non-tuberculous mycobacterial disease. J Clin Tuberc Other Mycobact Dis 24:100244. https://doi.org/10.1016/j.jctube.2021.100244
  93. Pereira AC, Ramos B, Reis AC et al. (2020) Non-tuberculous mycobacteria: Molecular and physiological bases of virulence and adaptation to ecological niches. Microorganisms 8:1380. https://doi.org/10.3390/microorganisms8091380
  94. Pidot SJ, Porter JL, Lister T et al. (2021) In vitro activity of SPR719 against Mycobacterium ulcerans, Mycobacterium marinum and Mycobacterium chimaera. PLoS Negl Trop Dis 15:e0009636. https://doi.org/10.1371/journal.pntd.0009636
  95. Pinner M (1935) Atypical acid-fast microorganisms. III. Chromogenic acid-fast bacilli from human beings. American Review of Tuberculosis 32(4):424–439.
  96. Prevots DR, Marras TK (2015) Epidemiology of human pulmonary infection with nontuberculous mycobacteria: A review. Clin Chest Med 36:13–34. https://doi.org/10.1016/j.ccm.2014.10.002
  97. Prevots DR, Shaw PA, Strickland D et al. (2010) Nontuberculous mycobacterial lung disease prevalence at four integrated health care delivery systems. Am J Respir Crit Care Med 182:970–976. https://doi.org/10.1164/rccm.201002-0310OC
  98. Quang NT, Jang J (2021) Current molecular therapeutic agents and drug candidates for Mycobacterium abscessus. Front Pharmacol 12:724725. https://doi.org/10.3389/fphar.2021.724725
  99. Ratnatunga CN, Lutzky VP, Kupz A et al. (2020) The rise of non-tuberculosis mycobacterial lung disease. Front Immunol 11:303. https://doi.org/10.3389/fimmu.2020.00303
  100. Riccardi N, Monticelli J, Antonello RM et al. (2020) Mycobacterium chimaera infections: An update. J Infect Chemother 26:199–205. https://doi.org/10.1016/j.jiac.2019.11.004
  101. Rodríguez-Temporal D, Herrera L, Alcaide F et al. (2023) Identification of Mycobacterium abscessus subspecies by MALDI-TOF mass spectrometry and machine learning. J Clin Microbiol 61:e0111022. https://doi.org/10.1128/jcm.01110-22
  102. Roth A, Reischl U, Schönfeld N et al. (2000) Mycobacterium heckeshornense sp. nov. A new pathogenic slowly growing Mycobacterium sp. causing cavitary lung disease in an immunocompetent patient. J Clin Microbiol 38:4102–4107. https://doi.org/10.1128/JCM.38.11.4102-4107.2000
  103. Ruis C, Bryant JM, Bell SC et al. (2021) Dissemination of Mycobacterium abscessus via global transmission networks. Nat Microbiol 6:1279–1288. https://doi.org/10.1038/s41564-021-00963-3
  104. Runyon EH (1959) Anonymous mycobacteria in pulmonary disease. Med Clin North Am 43:273–290. https://doi.org/10.1016/s0025-7125(16)34193-1
  105. Salvana EM, Cooper GS, Salata RA (2007) Mycobacterium other than tuberculosis (MOTT) infection: An emerging disease in infliximab-treated patients. J Infect 55:484–487. https://doi.org/10.1016/j.jinf.2007.08.007
  106. Schuurbiers MMF, Bruno M, Zweijpfenning SMH et al. (2020) Immune defects in patients with pulmonary Mycobacterium abscessus disease without cystic fibrosis. ERJ Open Res 6:00590–2020. https://doi.org/10.1183/23120541.00590-2020
  107. Seth-Smith HMB, Imkamp F, Tagini F et al. (2019) Discovery and characterization of Mycobacterium basiliense sp. nov., a nontuberculous Mycobacterium isolated from human lungs. Front Microbiol 9:3184. https://doi.org/10.3389/fmicb.2018.03184
  108. Shahraki AH, Trovato A, Mirsaeidi M et al. (2017) Mycobacterium persicum sp. nov., a novel species closely related to Mycobacterium kansasii and Mycobacterium gastri. Int J Syst Evol Microbiol 67:1766–1770. https://doi.org/10.1099/ijsem.0.001862
  109. Sharma SK, Upadhyay V (2020) Epidemiology, diagnosis and treatment of non-tuberculous mycobacterial diseases. Indian J Med Res 152:185–226. https://doi.org/10.4103/ijmr.IJMR_902_20
  110. Shin MK, Shin SJ (2021) Genetic involvement of Mycobacterium avium complex in the regulation and manipulation of innate immune functions of host cells. Int J Mol Sci 22:3011. https://doi.org/10.3390/ijms22063011
  111. Shirley M (2019) Amikacin liposome inhalation suspension: A review in Mycobacterium avium complex lung disease. Drugs 79:555–562. https://doi.org/10.1007/s40265-019-01095-z
  112. Shu CC, Wu MF, Pan SW et al. (2020) Host immune response against environmental nontuberculous mycobacteria and the risk populations of nontuberculous mycobacterial lung disease. J Formos Med Assoc 119(Suppl. 1):S13–S22. https://doi.org/10.1016/j.jfma.2020.05.001
  113. Shulha JA, Escalante P, Wilson JW (2019) Pharmacotherapy approaches in nontuberculous mycobacteria infections. Mayo Clin Proc 94:1567–1581. https://doi.org/10.1016/j.mayocp.2018.12.011
  114. Sousa S, Borges V, Joao I et al. (2019) Nontuberculous mycobacteria persistence in a cell model mimicking alveolar macrophages. Microorganisms 7:113. https://doi.org/10.3390/microorganisms7050113
  115. Steglich R, Dalcolmo GF, Carvalho de Queiroz Mello F et al. (2020) Non-tuberculous mycobacteria: Epidemiological pattern in a reference laboratory and risk factors associated with pulmonary disease. BMC Public Health 20:1593.
  116. Tam CM, Leung CC (2000) Cessation of the BCG (Bacille Calmette Guerin) revaccination programme for primary school children in Hong Kong. Public Health Epidemiol Bull 9:25–27.
  117. Taylor LJ, Mitchell JD (2023) Surgical resection in nontuberculous mycobacterial pulmonary disease. Clin Chest Med 44:861–868. https://doi.org/10.1016/j.ccm.2023.06.013
  118. Thomson RM, Donnan E, Konstantinos A (2017) Notification of nontuberculous mycobacteria: An Australian perspective. Ann Am Thorac Soc 14:318–323. https://doi.org/10.1513/AnnalsATS.201612-994OI
  119. Thomson RM, Furuya-Kanamori L, Coffey C et al. (2020) Influence of climate variables on the rising incidence of non-tuberculous mycobacterial (NTM) infections in Queensland, Australia 2001–2016. Sci Total Environ 740:139796. https://doi.org/10.1016/j.scitotenv.2020.139796
  120. Thomson RM, Loebinger MR, Burke AJ et al. (2023) OPTIMA: An open-label, non-comparative pilot trial of inhaled molgramostim in pulmonary nontuberculous mycobacterial infection. Ann Am Thorac Soc 21:568–576. https://doi.org/10.1513/AnnalsATS.202306-532OC
  121. Thornton CS, Mellett M, Jarand J et al. (2021) The respiratory microbiome and nontuberculous mycobacteria: An emerging concern in human health. Eur Respir Rev 30:200299. https://doi.org/10.1183/16000617.0299-2020
  122. Torrelles JB, Schlesinger LS (2017) Integrating lung physiology, immunology, and tuberculosis. Trends Microbiol 25:688–697. https://doi.org/10.1016/j.tim.2017.03.007
  123. Tortoli E (2014) Microbiological features and clinical relevance of new species of the genus Mycobacterium. Clin Microbiol Rev 27:727–752. https://doi.org/10.1128/CMR.00035-14
  124. Tortoli E, Fedrizzi T, Meehan CJ et al. (2017) The new phylogeny of the genus Mycobacterium: The old and the news. Infect Genet Evol 56:19–25. https://doi.org/10.1016/j.meegid.2017.10.013
  125. Tortoli E, Rindi L, Garcia MJ et al. (2004) Proposal to elevate the genetic variant MAC-A, included in the Mycobacterium avium complex, to species rank as Mycobacterium chimaera sp. nov. Int J Syst Evol Microbiol 54:1277–1285. https://doi.org/10.1099/ijs.0.02777-0
  126. van der Laan R, Snabilié A, Obradovic M (2022) Meeting the challenges of NTM-PD from the perspective of the organism and the disease process: Innovations in drug development and delivery. Respir Res 23:376. https://doi.org/10.1186/s12931-022-02299-w
  127. Varma-Basil M, Bose M (2019) Mapping the footprints of nontuberculous mycobacteria: A diagnostic dilemma. In: Velayati AA, Farnia P (eds) Nontuberculous mycobacteria (NTM). London, Academic Press, pp. 155–175. eBook ISBN: 9780128146934.
  128. Vega-Dominguez P, Peterson E, Pan M et al. (2020) Biofilms of the non-tuberculous Mycobacterium chelonae form an extracellular matrix and display distinct expression patterns. Cell Surf 6:100043. https://doi.org/10.1016/j.tcsw.2020.100043
  129. Verma D, Chan ED, Ordway DJ (2020) Non-tuberculous mycobacteria interference with BCG-current controversies and future directions. Vaccines (Basel) 8:688. https://doi.org/10.3390/vaccines8040688
  130. Victoria L, Gupta A, Gómez JL et al. (2021) Mycobacterium abscessus complex: A review of recent developments in an emerging pathogen. Front Cell Infect Microbiol 11:659997. https://doi.org/10.3389/fcimb.2021.659997
  131. Watanabe C, Yoshida Y, Kidoguchi G et al. (2023) Disseminated Mycobacterium abscessus infection with osteoarticular manifestations as an important differential diagnosis of inflammatory arthritis: A case report and literature review. Mod Rheumatol Case Rep 8:49–54. https://doi.org/10.1093/mrcr/rxad054
  132. Waugh KM, Wajahat R (2023) Pulmonary Mycobacterium abscessus infection: A pathogen in disguise. Cureus 15:e46897. https://doi.org/10.7759/cureus.46897
  133. Weeratunga P, Moller DR, Ho LP (2024) Immune mechanisms of granuloma formation in sarcoidosis and tuberculosis. J Clin Invest 134:e175264. https://doi.org/10.1172/JCI175264
  134. Wilińska E, Szturmowicz M (2010) [Lung mycobacteriosis – clinical presentation, diagnostics and treatment]. Pneumonol Alergol Pol 78:138–147.
  135. Winthrop KL, Flume PA, Thomson R et al. (2021) Amikacin liposome inhalation suspension for Mycobacterium avium complex lung disease: A 12-month open-label extension clinical trial. Ann Am Thorac Soc 18:1147–1157. https://doi.org/10.1513/AnnalsATS.202008-925OC
  136. Yoo SJ, Lee KH, Jung SN et al. (2013) Facial skin and soft tissue infection caused by Mycobacterium wolinskyi associated with cosmetic procedures. BMC Infect Dis 13:479. https://doi.org/10.1186/1471-2334-13-479
Language: English
Submitted on: Oct 28, 2024
Accepted on: Jan 14, 2025
Published on: Mar 14, 2025
Published by: Hirszfeld Institute of Immunology and Experimental Therapy
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Weronika Burzyńska, Marek Fol, Magdalena Druszczynska, published by Hirszfeld Institute of Immunology and Experimental Therapy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.