References
- Al-Khan AA, Nimmo JS, Tayebi M et al (2020) Parathyroid hormone receptor 1 (PTHR1) is a prognostic indicator in canine osteosarcoma. Sci Rep 10:1564.
https://doi.org/10.1038/s41598-020-58524-3 - Amrhein J, Drynda S, Schlatt L et al (2020) Tofacitinib and baricitinib are taken up by different uptake mechanisms determining the efficacy of both drugs in RA. Int J Mol Sci 21:6632.
https://doi.org/10.3390/ijms21186632 - Beckmann J, Schubert J, Morhenn HG et al (2015) Expression of choline and acetylcholine transporters in synovial tissue and cartilage of patients with rheumatoid arthritis and osteoarthritis. Cell Tissue Res 359:465–477.
https://doi.org/10.1007/s00441-014-2036-0 - Beyer AL, Kaemmerer D, Sänger J et al (2021) Immunohistochemical evaluation of adaptor protein FAM159B expression in normal and neoplastic human tissues. Int J Mol Sci 22:12250.
https://doi.org/10.3390/ijms222212250 - Bonaventura P, Lamboux A, Albarède F (2016) A feedback loop between inflammation and Zn uptake. PLoS One 11:e0147146.
https://doi.org/10.1371/journal.pone.0147146 - Bröer S (2008) Apical transporters for neutral amino acids: Physiology and pathophysiology. Physiology 23:95–103.
https://doi.org/10.1152/physiol.00045.2007 - Bustamante MF, Oliveira PG, Garcia-Carbonell R et al (2018) Hexokinase 2 as a novel selective metabolic target for rheumatoid arthritis. Ann Rheum Dis 77:1636–1643.
https://doi.org/10.1136/annrheumdis-2018-213103 - Crowe AR, Yue W (2019) Semi-quantitative determination of protein expression using immunohistochemistry staining and analysis: An integrated protocol. Bio Protoc 9:e3465.
https://doi.org/10.21769/BioProtoc.3465 - Diao L, Li N, Brayman TG et al (2010) Regulation of MRP2/ABCC2 and BSEP/ABCB11 expression in sandwich cultured human and rat hepatocytes exposed to inflammatory cytokines TNF-α, IL-6, and IL-1β. J Biol Chem 285:31185–31192.
https://doi.org/10.1074/jbc.M110.107805 - Eektimmerman F, Swen JJ, Böhringer S et al (2018) SLC04A1, SLC22A2 and SLC28A2 variants not related to methotrexate efficacy or toxicity in rheumatoid arthritis patients. Pharmacogenomics 19:613–619.
https://doi.org/10.2217/pgs-2018-0021 - Finckh A, Gilbert B, Hodkinson B et al (2022) Global epidemiology of rheumatoid arthritis. Nat Rev Rheumatol 18:591–602.
https://doi.org/10.1038/s41584-022-00827-y - Foster M, Petocz P, Samman S (2013) Inflammation markers predict zinc transporter gene expression in women with type 2 diabetes mellitus. J Nutr Biochem 24:1655–1661.
https://doi.org/10.1016/j.jnutbio.2013.02.006 - Fotiadis D, Kanai Y, Palacín M (2013) The SLC3 and SLC7 families of amino acid transporters. Mol Aspects Med 34:139–158.
https://doi.org/10.1016/j.mam.2012.10.007 - Franke A, McGovern DP, Barrett JC et al (2010) Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet 42:1118–1125.
https://doi.org/10.1038/ng.717 - Gallagher L, Cregan S, Biniecka M et al (2020) Insulin-resistant pathways are associated with disease activity in rheumatoid arthritis and are subject to disease modification through metabolic reprogramming: A potential novel therapeutic approach. Arthritis Rheumatol 72:896–902.
https://doi.org/10.1002/art.41190 - Giacomini KM, Huang SM, Tweedie DJ et al (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9:215–236.
https://doi.org/10.1038/nrd3028 - Hagenbuch B, Stieger B (2013) The SLCO (former SLC21) superfamily of transporters. Mol Aspects Med 34:396–412.
https://doi.org/10.1016/j.mam.2012.10.009 - Hediger MA, Clémençon B, Burrier RE et al (2013) The ABCs of membrane transporters in health and disease (SLC series): Introduction. Mol Aspects Med 34:95–107.
https://doi.org/10.1016/j.mam.2012.12.009 - Jang S, Kwon EJ, Lee JJ (2022) Rheumatoid arthritis: Pathogenic roles of diverse immune cells. Int J Mol Sci 23:905.
https://doi.org/10.3390/ijms23020905 - Jostins L, Ripke S, Weersma RK et al (2012) Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491:119–124.
https://doi.org/10.1038/nature11582 - Koepsell H, Endou H (2004) The SLC22 drug transporter family. Pflugers Arch 447:666–676.
https://doi.org/10.1007/s00424-003-1089-9 - Komatsu N, Takayanagi H (2022) Mechanisms of joint destruction in rheumatoid arthritis - immune cell-fibroblast-bone interactions. Nat Rev Rheumatol 18:415–429.
https://doi.org/10.1038/s41584-022-00793-5 - Köttgen A, Albrecht E, Teumer A et al (2013) Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat Genet 45:145–154.
https://doi.org/10.1038/ng.2500 - Kuca-Warnawin E, Burakowski T, Kurowska W et al (2011) Elevated number of recently activated T cells in bone marrow of patients with rheumatoid arthritis: A role for interleukin 15? Ann Rheum Dis 70:227–233.
https://doi.org/10.1136/ard.2009.124966 - Lima A, Bernardes M, Azevedo R et al (2014) SLC19A1, SLC46A1 and SLCO1B1 polymorphisms as predictors of methotrexate-related toxicity in Portuguese rheumatoid arthritis patients. Toxicol Sci 142:196–209.
https://doi.org/10.1093/toxsci/kfu162 - Liu J, Zhou F, Chen Q et al (2015) Chronic inflammation up-regulates P-gp in peripheral mononuclear blood cells via the STAT3/Nf-κb pathway in 2,4,6-trinitrobenzene sulfonic acid-induced colitis mice. Sci Rep 5:13558.
https://doi.org/10.1038/srep13558 - Martínez A, Valdivia A, Pascual-Salcedo D et al (2006) Role of SLC22A4, SLC22A5, and RUNX1 genes in rheumatoid arthritis. J Rheumatol 33:842–846.
https://doi.org/10.1016/j.clim.2006.04.114 - Mirdamadi K, Kwok J, Nevo O et al (2021) Impact of Th-17 cytokines on the regulation of transporters in human placental explants. Pharmaceutics 13:881.
https://doi.org/10.3390/pharmaceutics13060881 - Mueckler M, Thorens B (2013) The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med 34:121–138.
https://doi.org/10.1016/j.mam.2012.07.001 - Pawlik A, Paradowska-Gorycka A, Safranow K et al (2019) SLC22A5 polymorphism associated with risk of extra-articular manifestations in rheumatoid arthritis patients. Reumatologia 57:3–7.
https://doi.org/10.5114/reum.2019.83233 - Sanna S, Busonero F, Maschio A et al (2009) Common variants in the SLCO1B3 locus are associated with bilirubin levels and unconjugated hyperbilirubinemia. Hum Mol Genet 18:2711–2718.
https://doi.org/10.1093/hmg/ddp203 - Schlessinger A, Yee SW, Sali A et al (2013) SLC classification: An update. Clin Pharmacol Ther 94:19–23.
https://doi.org/10.1038/clpt.2013.73 - Seki M, Kawai Y, Ishii C, Yamanaka T et al (2017) Functional analysis of choline transporters in rheumatoid arthritis synovial fibroblasts. Mod Rheumatol 27:995–1003.
https://doi.org/10.1080/14397595.2017.1280118 - Sohn R, Junker M, Meurer A et al (2021) Anti-inflammatory effects of endogenously released adenosine in synovial cells of osteoarthritis and rheumatoid arthritis patients. Int J Mol Sci 22:8956.
https://doi.org/10.3390/ijms22168956 - Song W, Li D, Tao L et al (2020) Solute carrier transporters: The metabolic gatekeepers of immune cells. Acta Pharm Sin B 10:61–78.
https://doi.org/10.1016/j.apsb.2019.12.006 - Tokuhiro S, Yamada R, Chang X et al (2003) An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat Genet 35:341–348.
https://doi.org/10.1038/ng1267 - Torres A, Pedersen B, Cobo I et al (2022a) Epigenetic regulation of nutrient transporters in rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheumatol 74:1159–1171.
https://doi.org/10.1002/art.42077 - Torres A, Pedersen B, Guma M (2022b) Solute carrier nutrient transporters in rheumatoid arthritis fibroblast-like synoviocytes. Front Immunol 13:984408.
https://doi.org/10.3389/fimmu.2022.984408 - Wang J, Yin J, Li W et al (2020) Association between SLCO1A2 genetic variation and methotrexate toxicity in human rheumatoid arthritis treatment. J Biochem Mol Toxicol 34:e22513.
https://doi.org/10.1002/jbt.22513 - Xu J, Jiang C, Cai Y et al (2020) Intervening upregulated SLC7A5 could mitigate inflammatory mediator by mTOR-P70S6K signal in rheumatoid arthritis synoviocytes. Arthritis Res Ther 22:200.
https://doi.org/10.1186/s13075-020-02296-8