Have a personal or library account? Click to login

References

  1. Abebe EC, Ayele TM, Muche ZT et al (2021) Neuropilin 1: A novel entry factor for Sars-Cov-2 infection and a potential therapeutic target. Biologics 15:143–152. <a href="https://doi.org/10.2147/BTT.S307352" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2147/BTT.S307352</a>
  2. Aboudounya MM, Heads RJ (2021) COVID-19 and Toll-like receptor 4 (TLR4): SARS-CoV-2 may bind and activate TLR4 to increase ACE2 expression, facilitating entry and causing hyper-inflammation. Mediators Inflamm 2021:8874339. <a href="https://doi.org/10.1155/2021/8874339" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1155/2021/8874339</a>
  3. Ahmed S, Zimba O, Gasparyan AY (2020) Thrombosis in coronavirus disease 2019 (COVID-19) through the prism of Virchow's triad. Clin Rheumatol 39:2529–2543. <a href="https://doi.org/10.1007/S10067-020-05275-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/S10067-020-05275-1</a>
  4. Alzamora MC, Paredes T, Caceres D et al (2020) Severe COVID-19 during pregnancy and possible vertical transmission. Am J Perinatol 37:861–865. <a href="https://doi.org/10.1055/S-0040-1710050" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1055/S-0040-1710050</a>
  5. Argueta LB, Lacko LA, Yaron Bram Y et al (2022) Inflammatory responses in the placenta upon SARS-CoV-2 infection late in pregnancy. IScience 25:104223. <a href="https://doi.org/10.1016/J.ISCI.2022.104223" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.ISCI.2022.104223</a>
  6. Baergen RN, Burton GJ, Kaplan CG (2022) Benirschke's pathology of the human placenta. Benirschke's pathology of the human placenta. Springer International Publishing. <a href="https://doi.org/10.1007/978-3-030-84725-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/978-3-030-84725-8</a>
  7. Baston-Buest DM, Porn AC, SchanzA et al (2011) Expression of the vascular endothelial growth factor receptor neuropilin-1 at the human embryomaternal interface. Eur J Obstet Gynecol Reprod Biol 154:151–156. <a href="https://doi.org/10.1016/J.EJOGRB.2010.10.018" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.EJOGRB.2010.10.018</a>
  8. Boncompagni A, De Agostini M, Lugli L et al (2022) Unexpected vertical transmission of SARS-CoV-2: Discordant clinical course and transmission from mother to newborn. Microorganisms 10:1718. <a href="https://doi.org/10.3390/MICROORGANISMS10091718" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/MICROORGANISMS10091718</a>
  9. Bouachba A, Allias F, Nadaud B et al (2021) Placental lesions and SARS-Cov-2 infection: Diffuse placenta damage associated to poor fetal outcome. Placenta 112:97–104. <a href="https://doi.org/10.1016/J.PLACENTA.2021.07.288" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.PLACENTA.2021.07.288</a>
  10. Boyraz B, James K, Hornick JL et al (2022) Placental pathology from COVID-19–recovered (nonacute) patients. Hum Pathol 125: 18–22. <a href="https://doi.org/10.1016/J.HUMPATH.2022.04.005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.HUMPATH.2022.04.005</a>
  11. Celik O, Saglam A, Baysal B et al (2020) Factors preventing materno-fetal transmission of SARS-CoV-2. Placenta 97:1–5. <a href="https://doi.org/10.1016/J.PLACENTA.2020.05.012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.PLACENTA.2020.05.012</a>
  12. Centers for Disease Control and Prevention (2023) Care for Breastfeeding People. <a href="https://www.cdc.gov/coronavirus/2019-ncov/hcp/care-for-breastfeeding-people.html" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://www.cdc.gov/coronavirus/2019-ncov/hcp/care-for-breastfeeding-people.html</a>. Accessed 30 June 2023.
  13. Chambers M, Rees A, Cronin JG et al (2021) Macrophage plasticity in reproduction and environmental influences on their function. Front Immunol 11:607328. <a href="https://doi.org/10.3389/FIMMU.2020.607328" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/FIMMU.2020.607328</a>
  14. Chen J, Du L, Wang F et al (2022) Cellular and molecular atlas of the placenta from a COVID-19 pregnant woman infected at midgestation highlights the defective impacts on foetal health. Cell Prolif 55:e13204. <a href="https://doi.org/10.1111/CPR.13204" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/CPR.13204</a>
  15. Chlamydas S, Papavassiliou AG, Piperi C (2020) Epigenetic mechanisms regulating COVID-19 infection. Epigenetics 16:263–270. <a href="https://doi.org/10.1080/15592294.2020.1796896" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/15592294.2020.1796896</a>
  16. Colson A, Depoix CL, Dessilly G et al (2021) Clinical and in vitro evidence against placenta infection at term by severe acute respiratory syndrome coronavirus 2. Am J Pathol 191:1610–1623. <a href="https://doi.org/10.1016/J.AJPATH.2021.05.009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.AJPATH.2021.05.009</a>
  17. Daly JL, Simonetti B, Klein K et al (2020) Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science 370:861–865. <a href="https://doi.org/10.1126/SCIENCE.ABD3072" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1126/SCIENCE.ABD3072</a>
  18. Donders GGG, Bosmans E, Reumers J et al (2022) Sperm quality and absence of SARS-CoV-2 RNA in semen after COVID-19 infection: A prospective, observational study and validation of the Sperm COVID test. Fertil Steril 117:287–296. <a href="https://doi.org/10.1016/J.FERTNSTERT.2021.10.022" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.FERTNSTERT.2021.10.022</a>
  19. Edlow AG, Li JZ, Collier A-RY et al (2020) Assessment of maternal and neonatal SARS-CoV-2 viral load, transplacental antibody transfer, and placental pathology in pregnancies during the COVID-19 pandemic. JAMA Netw Open 3:e2030455. <a href="https://doi.org/10.1001/JAMANETWORKOPEN.2020.30455" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1001/JAMANETWORKOPEN.2020.30455</a>
  20. European Centre for Disease Prevention and Control (2023) SARS-CoV-2 Variants of Concern as of 29 June 2023. <a href="https://www.ecdc.europa.eu/en/covid-19/variants-concern" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://www.ecdc.europa.eu/en/covid-19/variants-concern</a>. Accessed 30 June 2023.
  21. Facchetti F, Bugatti M, Drera E et al (2020) SARS-CoV2 vertical transmission with adverse effects on the newborn revealed through integrated immunohistochemical, electron microscopy and molecular analyses of placenta. EBioMedicine 59:102951. <a href="https://doi.org/10.1016/J.EBIOM.2020.102951" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.EBIOM.2020.102951</a>
  22. Fallach N, Segal Y, Agassy J et al (2022) Pregnancy outcomes after SARS-CoV-2 infection by trimester: A large, populationbased cohort study. PLoS One 17:e0270893. <a href="https://doi.org/10.1371/JOURNAL.PONE.0270893" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1371/JOURNAL.PONE.0270893</a>
  23. Fenizia C, Saulle I, Di Giminiani M et al (2021) Unlikely SARS-CoV-2 transmission during vaginal delivery. Reprod Sci 28:2939–2941. <a href="https://doi.org/10.1007/S43032-021-00681-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/S43032-021-00681-5</a>
  24. Fu Y, Cheng Y, Wu Y (2020) Understanding SARS-CoV-2-mediated inflammatory responses: From mechanisms to potential therapeutic tools. Virol Sin 35:266–271. <a href="https://doi.org/10.1007/S12250-020-00207-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/S12250-020-00207-4</a>
  25. Gacci M, Coppi M, Baldi E et al (2021) Semen impairment and occurrence of SARS-CoV-2 virus in semen after recovery from COVID-19. Hum Reprod 36:1520–1529. <a href="https://doi.org/10.1093/HUMREP/DEAB026" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/HUMREP/DEAB026</a>
  26. Garcia-Flores V, Romero R, Xu Y et al (2022) Maternal-fetal immune responses in pregnant women infected with SARS-CoV-2. Nat Commun 13:320. <a href="https://doi.org/10.1038/S41467-021-27745-Z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/S41467-021-27745-Z</a>
  27. Gheware A, Ray A, Rana D et al (2022) ACE2 protein expression in lung tissues of severe COVID-19 infection. Sci Rep 12:4058. <a href="https://doi.org/10.1038/S41598-022-07918-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/S41598-022-07918-6</a>
  28. Glowacka I, Bertram S, Müller MA et al (2011) Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol 85:4122–4134. <a href="https://doi.org/10.1128/JVI.02232-10" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/JVI.02232-10</a>
  29. Gorbalenya AE, Baker SC, Baric RS et al (2020) The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-NCoV and naming it SARS-CoV-2. Nat Microbiol 5: 536–544. <a href="https://doi.org/10.1038/S41564-020-0695-Z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/S41564-020-0695-Z</a>
  30. Guo HF, Vander Kooi CW (2015) Neuropilin functions as an essential cell surface receptor. J Biol Chem 290:29120–29126. <a href="https://doi.org/10.1074/JBC.R115.687327" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1074/JBC.R115.687327</a>
  31. Gychka SG, Brelidze TI, Kuchyn IL et al (2022) Placental vascular remodeling in pregnant women with COVID-19. PLoS One 17:e0268591. <a href="https://doi.org/10.1371/JOURNAL.PONE.0268591" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1371/JOURNAL.PONE.0268591</a>
  32. Hosier H, Farhadian SF, Morotti RA et al (2020) SARS-CoV-2 infection of the placenta. J Clin Invest 130:4947–4953. <a href="https://doi.org/10.1172/JCI139569" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1172/JCI139569</a>
  33. Huang C, Wang Y, Li X et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395:497–506. <a href="https://doi.org/10.1016/S0140-6736(20)30183-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0140-6736(20)30183-5</a>
  34. Huang Y, Wang Y, Xu D et al (2022) Characterization of the SARS-CoV-2 coreceptor NRP1 expression profiles in healthy people and cancer patients: Implication for susceptibility to COVID-19 disease and potential therapeutic strategy. Front Genet 13:995736. <a href="https://doi.org/10.3389/FGENE.2022.995736" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/FGENE.2022.995736</a>
  35. Hudak ML, Flannery DD, Barnette K et al (2023) Maternal and newborn hospital outcomes of perinatal SARS-CoV-2 infection: A national registry. Pediatrics 151:e2022059595. <a href="https://doi.org/10.1542/PEDS.2022-059595" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1542/PEDS.2022-059595</a>
  36. Jackson CB, Farzan M, Chen B et al (2022) Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol 23:3–20. <a href="https://doi.org/10.1038/S41580-021-00418-X" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/S41580-021-00418-X</a>
  37. Jafarzadeh A, Chauhan P, Saha B et al (2020) Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: Lessons from SARS and MERS, and potential therapeutic interventions. Life Sci 257:118102. <a href="https://doi.org/10.1016/J.LFS.2020.118102" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.LFS.2020.118102</a>
  38. Jia HP, Dwight C, Look DC, Shi L et al (2005) ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol 79:14614–14621. <a href="https://doi.org/10.1128/JVI.79.23.14614-14621.2005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/JVI.79.23.14614-14621.2005</a>
  39. Jing Y, Run-Qian L, Hao-Ran et al (2020) Potential influence of COVID-19/ACE2 on the female reproductive system. Mol Hum Reprod 26:367–373. <a href="https://doi.org/10.1093/MOLEHR/GAAA030" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/MOLEHR/GAAA030</a>
  40. Kapila V, Khalid C (2023) Physiology, placenta. StatPearls Publishing LLC. <a href="https://pubmed.ncbi.nlm.nih.gov/30855916/" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://pubmed.ncbi.nlm.nih.gov/30855916/</a>
  41. Karthik K, Senthilkumar TMA, Udhayavel S et al (2020) Role of antibody-dependent enhancement (ADE) in the virulence of SARS-CoV-2 and its mitigation strategies for the development of vaccines and immunotherapies to counter COVID-19. Hum Vaccin Immunother 16:3055–3060. <a href="https://doi.org/10.1080/21645515.2020.1796425" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/21645515.2020.1796425</a>
  42. Karuppan, MKM, Devadoss D, Nair M et al (2021) SARS-CoV-2 infection in the central and peripheral nervous system-associated morbidities and their potential mechanism. Mol Neurobiol 58:2465–2480. <a href="https://doi.org/10.1007/S12035-020-02245-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/S12035-020-02245-1</a>
  43. Khalil RA, Granger JP (2002) Vascular mechanisms of increased arterial pressure in preeclampsia: Lessons from animal models. Am J Physiol Regul Integr Comp Physiol 283:R29–R45. <a href="https://doi.org/10.1152/AJPREGU.00762.2001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1152/AJPREGU.00762.2001</a>
  44. Konstantinidou AE, Angelidou S, Havaki S et al (2022) Stillbirth due to SARS-CoV-2 placentitis without evidence of intrauterine transmission to fetus: Association with maternal risk factors. Ultrasound Obstet Gynecol 59:813–822. <a href="https://doi.org/10.1002/UOG.24906" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/UOG.24906</a>
  45. Kotlyar AM, Grechukhina O, Chen A et al (2021) Vertical transmission of coronavirus disease 2019: A systematic review and meta-analysis. Am J Obstet Gynecol 224:35–53.e3. <a href="https://doi.org/10.1016/J.AJOG.2020.07.049" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.AJOG.2020.07.049</a>
  46. Labzin LI, Chew KY, Eschke K et al (2023) Macrophage ACE2 is necessary for SARS-CoV-2 replication and subsequent cytokine responses that restrict continued virion release. Sci Signal 16:eabq1366. <a href="https://doi.org/10.1126/SCISIGNAL.ABQ1366" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1126/SCISIGNAL.ABQ1366</a>
  47. Mao Q, Chu S, Shapiro S et al (2022) Placental SARS-CoV-2 distribution correlates with level of tissue oxygenation in COVID-19-associated necrotizing histiocytic intervillositis/perivillous fibrin deposition. Placenta 117:187–193. <a href="https://doi.org/10.1016/J.PLACENTA.2021.12.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.PLACENTA.2021.12.002</a>
  48. Mayi BS, Leibowitz JA, Arden T, Woods AT et al (2021) The role of neuropilin-1 in COVID-19. PLoS Pathog 17:e1009153. <a href="https://doi.org/10.1371/JOURNAL.PPAT.1009153" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1371/JOURNAL.PPAT.1009153</a>
  49. Megli CJ, Coyne CB (2022) Infections at the maternal-fetal interface: An overview of pathogenesis and defence. Nat Rev Microbiol 20:67–82. <a href="https://doi.org/10.1038/S41579-021-00610-Y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/S41579-021-00610-Y</a>
  50. Menter T, Mertz KD, Jiang S et al (2021) Placental pathology findings during and after SARS-CoV-2 infection: Features of villitis and malperfusion. Pathobiology 88:69–77. <a href="https://doi.org/10.1159/000511324" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1159/000511324</a>
  51. Mezouar S, Benammar I, Boumaza A et al (2019) Full-term human placental macrophages eliminate coxiella burnetii through an IFN-γ autocrine loop. Front Microbiol 10:2434. <a href="https://doi.org/10.3389/FMICB.2019.02434" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/FMICB.2019.02434</a>
  52. Mezouar S, Katsogiannou M, Amara AB et al (2021) Placental macrophages: Origin, heterogeneity, function and role in pregnancy-associated infections. Placenta 103:94–103. <a href="https://doi.org/10.1016/J.PLACENTA.2020.10.017" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.PLACENTA.2020.10.017</a>
  53. Mirbeyk M, Saghazadeh A, Rezaei N (2021) A systematic review of pregnant women with COVID-19 and their neonates. Arch Gynecol Obstet 304:5–38. <a href="https://doi.org/10.1007/S00404-021-06049-Z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/S00404-021-06049-Z</a>
  54. Naidoo N, Moodley J, Khaliq OP et al (2022) Neuropilin-1 in the pathogenesis of preeclampsia, HIV-1, and SARS-CoV-2 infection: A review. Virus Res 319:198880. <a href="https://doi.org/10.1016/J.VIRUSRES.2022.198880" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.VIRUSRES.2022.198880</a>
  55. Nobrega Cruz NA, Stoll D, Casarini DE et al (2021) Role of ACE2 in pregnancy and potential implications for COVID-19 susceptibility. Clin Sci 135:1805–1824. <a href="https://doi.org/10.1042/CS20210284" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1042/CS20210284</a>
  56. Pathirathna ML, Samarasekara BPP, Dasanayake TS et al (2022) Adverse perinatal outcomes in COVID-19 infected pregnant women: A systematic review and meta-analysis. Healthcare 10:203. <a href="https://doi.org/10.3390/HEALTHCARE10020203" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/HEALTHCARE10020203</a>
  57. Percivalle E, Sammartino JC, Cassaniti I et al (2021) Macrophages and monocytes: ‘Trojan Horses’ in COVID-19. Viruses 13:2178. <a href="https://doi.org/10.3390/V13112178" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/V13112178</a>
  58. Pettirosso E, Giles M, Cole S et al (2020) COVID-19 and pregnancy: A review of clinical characteristics, obstetric outcomes and vertical transmission. Austr NZ J Obstet Gynaecol 60:640–659. <a href="https://doi.org/10.1111/AJO.13204" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/AJO.13204</a>
  59. Rackaityte E, Halkias J (2020) Mechanisms of fetal T cell tolerance and immune regulation. Front Immunol 11:588. <a href="https://doi.org/10.3389/FIMMU.2020.00588" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/FIMMU.2020.00588</a>
  60. Reyes L, Wolfe B, Golos T (2017) Hofbauer cells: Placental macrophages of fetal origin. Results Probl Cell Differ 62:45–60. <a href="https://doi.org/10.1007/978-3-319-54090-0_3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/978-3-319-54090-0_3</a>
  61. Robbins JR, Bakardjiev AI (2012) Pathogens and the placental fortress. Curr Opin Microbiol 15:36–43. <a href="https://doi.org/10.1016/J.MIB.2011.11.006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.MIB.2011.11.006</a>
  62. Rojas-Rueda D, Morales-Zamora E (2021) Built environment, transport, and COVID-19: A review. Curr Environ Health Rep 8:138–145. <a href="https://doi.org/10.1007/S40572-021-00307-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/S40572-021-00307-7</a>
  63. Roy S, Arup K, Bag AK, Singh RK et al (2017) Multifaceted role of neuropilins in the immune system: Potential targets for immunotherapy. Front Immunol 8:1228. <a href="https://doi.org/10.3389/FIMMU.2017.01228" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/FIMMU.2017.01228</a>
  64. Ruan D, Ye ZW, Yuan S et al (2022) Human early syncytiotrophoblasts are highly susceptible to SARS-CoV-2 infection. Cell Rep Med 3:100849. <a href="https://doi.org/10.1016/J.XCRM.2022.100849" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.XCRM.2022.100849</a>
  65. Salamanna F, Maglio M, Landini MP et al (2020) Body localization of ACE-2: On the trail of the keyhole of SARS-CoV-2. Front Med 7:594495. <a href="https://doi.org/10.3389/FMED.2020.594495" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/FMED.2020.594495</a>
  66. Samavati L, Uhal BD (2020) ACE2, much more than just a receptor for SARS-COV-2. Front Cell Infect Microbiol 10:317. <a href="https://doi.org/10.3389/FCIMB.2020.00317" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/FCIMB.2020.00317</a>
  67. Schwartz DA, Baldewijns M, Benachi A et al (2021) Hofbauer cells and COVID-19 in pregnancy: molecular pathology analysis of villous macrophages, endothelial cells, and placental findings from 22 placentas infected by SARS-CoV-2 with and without fetal transmission. Arch Pathol Lab Med 145:1328–1340. <a href="https://doi.org/10.5858/ARPA.2021-0296-SA" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.5858/ARPA.2021-0296-SA</a>
  68. Schwartz DA, Morotti D, Beigi B et al (2020) Confirming vertical fetal infection with coronavirus disease 2019: Neonatal and pathology criteria for early onset and transplacental transmission of severe acute respiratory syndrome coronavirus 2 from infected pregnant mothers. Arch Pathol Lab Med 144:1451–1456. <a href="https://doi.org/10.5858/ARPA.2020-0442-SA" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.5858/ARPA.2020-0442-SA</a>
  69. Sefik E, Rihao Qu R, Junqueira C et al (2022) Inflammasome activation in infected macrophages drives COVID-19 pathology. Nature 606:585–593. <a href="https://doi.org/10.1038/S41586-022-04802-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/S41586-022-04802-1</a>
  70. Senapati S, Banerjee P, Bhagavatula S et al (2021) Contributions of human ACE2 and TMPRSS2 in determining host-pathogen interaction of COVID-19. J Genet 100:12. <a href="https://doi.org/10.1007/S12041-021-01262-W" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/S12041-021-01262-W</a>
  71. Seyed Hosseini E, Kashani NR, Nikzad H et al (2020) The novel coronavirus disease-2019 (COVID-19): Mechanism of action, detection and recent therapeutic strategies. Virology 551:1–9. <a href="https://doi.org/10.1016/J.VIROL.2020.08.011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.VIROL.2020.08.011</a>
  72. Shanes ED, Mithal LB, Otero S et al (2020) Placental pathology in COVID-19. Am J Clin Pathol 154:23–32. <a href="https://doi.org/10.1093/AJCP/AQAA089" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/AJCP/AQAA089</a>
  73. Sharps MC, Hayes DJL, Lee S et al (2020) A structured review of placental morphology and histopathological lesions associated with SARS-CoV-2 infection. Placenta 101:13–29. <a href="https://doi.org/10.1016/J.PLACENTA.2020.08.018" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.PLACENTA.2020.08.018</a>
  74. Slomski A (2022) Maternal death rate increased during early COVID-19 pandemic. JAMA 328:415. <a href="https://doi.org/10.1001/JAMA.2022.12729" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1001/JAMA.2022.12729</a>
  75. Smithgall MC, Liu-Jarin X, Hamele-Bena D et al (2020) Third-trimester placentas of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-positive women: histomorphology, including viral immunohistochemistry and in-situ hybridization. Histopathology 77:994–999. <a href="https://doi.org/10.1111/HIS.14215" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/HIS.14215</a>
  76. Takada K, Shimodai-Yamada S, Suzuki M et al (2022) Restriction of SARS-CoV-2 replication in the human placenta. Placenta 127:73–76. <a href="https://doi.org/10.1016/J.PLACENTA.2022.07.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.PLACENTA.2022.07.010</a>
  77. The American College of Obstetricians and Gynecologists (2023) COVID-19. <a href="https://www.acog.org/womens-health/covid-19" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://www.acog.org/womens-health/covid-19</a>. Accessed 30 June 2023.
  78. Vivanti AJ, Vauloup-Fellous C, Prevot S et al (2020) Transplacental transmission of SARS-CoV-2 infection. Nat Commun 11:3572. <a href="https://doi.org/10.1038/S41467-020-17436-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/S41467-020-17436-6</a>
  79. Wang S, Wang J, Yu X et al (2022) Antibody-dependent enhancement (ADE) of SARS-CoV-2 pseudoviral infection requires FcγRIIB and virus-antibody complex with bivalent interaction. Commun Biol 5:262. <a href="https://doi.org/10.1038/S42003-022-03207-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/S42003-022-03207-0</a>
  80. Watkins JC, Torous VF, Roberts DJ (2021) Defining severe acute respiratory syndrome coronavirus 2 (sars-cov-2) placentitis a report of 7 cases with confirmatory in situ hybridization, distinct histomorphologic features, and evidence of complement deposition. Arch Pathol Lab Med 145:1341–1349. <a href="https://doi.org/10.5858/ARPA.2021-0246-SA" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.5858/ARPA.2021-0246-SA</a>
  81. Xu Y, Liang Y, Parunov L et al (2020) Combined thrombogenic effects of vessel injury, pregnancy and procoagulant immune globulin administration in mice. Thromb J 18:32. <a href="https://doi.org/10.1186/S12959-020-00245-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/S12959-020-00245-8</a>
  82. Yao Y, Xu XH, Jin L (2019) Macrophage polarization in physiological and pathological pregnancy. Front Immunol 10:792. <a href="https://doi.org/10.3389/FIMMU.2019.00792" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/FIMMU.2019.00792</a>
  83. Yu X, Lin Q, Qin X et al (2016) ACE2 antagonizes VEGFa to reduce vascular permeability during acute lung injury. Cell Physiol Biochem 38:1055–1062. <a href="https://doi.org/10.1159/000443056" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1159/000443056</a>
  84. Zaim S, Chong JH, Sankaranarayanan V et al (2020) COVID-19 and multiorgan response. Curr Probl Cardiol 45:100618. <a href="https://doi.org/10.1016/J.CPCARDIOL.2020.100618" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.CPCARDIOL.2020.100618</a>
  85. Zhou P, Yang XL, Wang XG et al (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270–273. <a href="https://doi.org/10.1038/S41586-020-2012-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/S41586-020-2012-7</a>
Language: English
Submitted on: Jun 30, 2023
Accepted on: Sep 7, 2023
Published on: Dec 26, 2023
Published by: Hirszfeld Institute of Immunology and Experimental Therapy
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2023 Karol Gostomczyk, Jędrzej Borowczak, Marta Siekielska-Domanowska, Krzysztof Szczerbowski, Mateusz Maniewski, Mariusz Dubiel, Łukasz Szylberg, Magdalena Bodnar, published by Hirszfeld Institute of Immunology and Experimental Therapy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.