Have a personal or library account? Click to login
Managing and monitoring indoor air quality and surface decontamination in healthcare environments Cover

References

  1. World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide, 2021 [displayed 20 November 2025]. Available at https://www.who.int/publications/i/item/9789240034228
  2. Chan WL, Du S, Lin H, Lam YH, Lam JCH, Nah T, Lee PKH. Cooking-derived organic compounds shape bacterial communities on household surfaces. Environ Sci Technol 2025;59:13924–34. doi: 10.1021/acs.est.5c02724
  3. Fonseca A, Abreu I, Guerreiro MJ, Barros N. Indoor air quality in healthcare units - A systematic literature review focusing recent research. Sustainability 2022;14:967. doi: 10.3390/su14020967
  4. Settimo G, Gola M, Capolongo S. The relevance of indoor air quality in hospital settings: from an exclusively biological issue to a global approach in the Italian context. Atmosphere 2020;11:361. doi: 10.3390/atmos11040361
  5. Śmiełowska M, Marć M, Zabiegała B. Indoor air quality in public utility environments - a review. Environ Sci Pollut Res Int 2017;24:11166–76. doi: 10.1007/s11356-017-8567-7
  6. Clements N, Binnicker MJ, Roger VL. Indoor environment and viral infections. Mayo Clin Proc 2020;95:1581–3. doi: 10.1016/j.mayocp.2020.05.028
  7. Chawla H, Anand P, Garg K, Bhagat N, Varmani SG, Bansal T, McBain AJ, Marwah RG. A comprehensive review of microbial contamination in the indoor environment: sources, sampling, health risks, and mitigation strategies. Front Public Health 2023;11:1285393. doi: 10.3389/fpubh.2023.1285393
  8. Qian H, Miao T, Liu L, Zheng X, Luo D, Li Y. Indoor transmission of SARS-CoV-2. Indoor Air 2021;31:639–45. doi: 10.1111/ina.12766
  9. Settimo G, Manigrasso M, Avino P. Indoor air quality: A focus on the European legislation and state-of-the-art research in Italy. Atmosphere 2020;11:370. doi: 10.3390/atmos11040370
  10. Bansal OP. A review of the indoor air quality of hospitals and healthcare centres. Int J Biol Pharm Sci Arch 2024;8:113–27. doi: 10.53771/ijbpsa.2024.8.1.0076
  11. EUR-Lex. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe [displayed 3 April 2025]. Available at http://data.europa.eu/eli/dir/2008/50/oj
  12. ANSES. [Proposition de valeurs guides de qualité d’air intérieur -Méthode d’élaboration de valeurs guides de qualité d’air intérieur, 2016, in France] [displayed 3 April 2025]. Available at https://www.anses.fr/system/files/AIR2010SA0307Ra.pdf
  13. Settimo G, D’Alessandro D. [European community guidelines and standards in indoor air quality: what proposals for Italy, in Italian]. Epidemiol Prev 2014;38(6 Suppl 2):36–41. PMID: 25759341
  14. National Health Service (NHS). Health Technical Memorandum 03-01. Specialised ventilation for healthcare premises Part A: The concept, design, specification, installation and acceptance testing of healthcare ventilation systems [displayed 3 December 2025]. Available at https://www.england.nhs.uk/wp-content/uploads/2021/05/HTM0301-PartA-accessible-F6.pdf
  15. National Health Service (NHS). Health Technical Memorandum 03-01. Specialised ventilation for healthcare premises Part B: The management, operation, maintenance and routine testing of existing healthcare ventilation systems [displayed 3 December 2025]. Available at https://www.england.nhs.uk/wp-content/uploads/2021/05/HTM0301-PartB-accessible-F6.pdf
  16. Sotgiu G, Are BM, Pesapane L, Palmieri A, Muresu N, Cossu A, Dettori M, Azara A, Mura II, Cocuzza C, Aliberti S, Piana A. Nosocomial transmission of carbapenem-resistant Klebsiella pneumoniae in an Italian university hospital: a molecular epidemiological study. J Hosp Infect 2018;99:413–8. doi: 10.1016/j.jhin.2018.03.033
  17. Bonadonna L, Cannarozzi de Grazia M, Capolongo S, Casini B, Cristina ML, Daniele G, D’Alessandro D, De Giglio O, Di Benedetto A, Di Vittorio G, Ferretti E, Frascolla B, La Rosa G, La Sala L, Lopuzzo MG, Lucentini L, Montagna MT, Moscato U, Pasquarella C, Prencipe R, Ricci ML, Romano Spica V, Signorelli C, Veschetti E. Water safety in healthcare facilities. The Vieste Charter. Ann Ig 2017;29:92–100. doi: 10.7416/ai.2017.2136
  18. European Commission. Detailed Commission guidelines on good manufacturing practice for investigational medicinal products for human use, pursuant to the second subparagraph of Article 63(1) of Regulation (EU) No 536/2014 [displayed 3 December 2025]. Available at https://health.ec.europa.eu/document/download/a0b206a0-5788-406b-9e20-e0525b16e712_en
  19. Zahar JR, Jolivet S, Adam H, Dananché C, Lizon J, Alfandari S, Boulestreau H, Baghdadi N, Bay JO, Bénéteau AM, Bougnoux ME, Brenier-Pinchart MP, Dalle JH, Fournier S, Fuzibet JG, Kauffmann-Lacroix C, Le Guinche I, Lepelletier D, Loukili N, Lory A, Morvan M, Oumedaly R, Ribaud P, Rohrlich P, Vanhems P, Aho S, Vanjak D, Gangneux JP. Quelles mesures pour maîtriser le risque infectieux chez les patients immunodéprimés? Recommandations formalisées d’experts [French recommendations on control measures to reduce the infectious risk in immunocompromised patients, in French]. J Mycol Méd 2017;27:449–56. doi: 10.1016/j.mycmed.2017.10.004
  20. Kumar P, Kausar Mohd A, Singh AB, Singh R. Biological contaminants in the indoor air environment and their impacts on human health. Air Qual Atmos Health 2021;14:1723–36. doi: 10.1007/s11869-021-00978-z
  21. Sivri N, Dogru AO, Bagcigil AF, Metiner K, Seker DZ. Assessment of the indoor air quality based on airborne bacteria and fungi measurements in a public school of Istanbul. Arab J Geosci 2020;13:1291. doi: 10.1007/s12517-020-06252-3
  22. Harrison RM, editor. Environmental Pollutant Exposures and Public Health. Cambridge: Royal Society of Chemistry; 2020. doi: 10.1039/9781839160431
  23. Nourozi B, Wierzbicka A, Yao R, Sadrizadeh S. A systematic review of ventilation solutions for hospital wards: Addressing cross-infection and patient safety. Build Environ 2024;247:110954. doi: 10.1016/j.buildenv.2023.110954
  24. Li K, Kang L, Guo K, Song L, Zhang X, Xu W. Risk assessment of respiratory droplet infections caused by coughing in various indoor dynamic environments. J Build Eng 2023;80:108116. doi: 10.1016/j.jobe.2023.108116
  25. Srikanth P, Sudharsanam S, Steinberg R. Bio-aerosols in indoor environment: Composition, health effects and analysis. Indian J Med Microbiol 2008;26:302–12. doi: 10.4103/0255-0857.43555
  26. Korotetskiy IS, Shilov SV, Kuznetsova T, Kerimzhanova B, Korotetskaya N, Ivanova L, Zubenko N, Parenova R, Reva ON. Analysis of whole-genome sequences of pathogenic gram-positive and gram-negative isolates from the same hospital environment to investigate common evolutionary trends associated with horizontal gene exchange, mutations and DNA methylation patterning. Microorganisms 2023;11:323. doi: 10.3390/microorganisms11020323
  27. Dannemiller KC, Weschler CJ, Peccia J. Fungal and bacterial growth in floor dust at elevated relative humidity levels. Indoor Air 2017;27:354–63. doi: 10.1111/ina.12313
  28. Božić J, Ilić P, Ilić S. Indoor air quality in the hospital: the influence of heating, ventilating and conditioning systems. Braz Arch Biol Technol 2019;62:e19180295. doi: 10.1590/1678-4324-2019180295
  29. Ilić P. [Pollution and Control of Air Quality in the Function of Environment Protection, in Serbian]. Banja Luka: Independent University; 2015.
  30. Dancer SJ. Controlling hospital-acquired infection: focus on the role of the environment and new technologies for decontamination. Clin Microbiol Rev 2014;27:665–90. doi: 10.1128/CMR.00020-14
  31. Baurès E, Blanchard O, Mercier F, Surget E, Le Cann P, Rivier A, Gangneux JP, Florentin A. Indoor air quality in two French hospitals: Measurement of chemical and microbiological contaminants. Sci Total Environ 2018;642:168–79. doi: 10.1016/j.scitotenv.2018.06.047
  32. Gola M, Settimo G, Capolongo S. Indoor air quality in inpatient environments: A systematic review on factors that influence chemical pollution in inpatient wards. J Healthc Eng 2019;2019:8358306. doi: 10.1155/2019/8358306
  33. Calderon L, Maddalena R, Russell M, Chen S, Nolan JES, Bradman A, Harley KG. Air concentrations of volatile organic compounds associated with conventional and “green” cleaning products in real-world and laboratory settings. Indoor Air 2022;32(11):e13162. doi: 10.1111/ina.1316
  34. Zhang X, Li X, Wang Z, Deng G, Wang Z. Exposure level and influential factors of HCHO, BTX and TVOC from the interior redecoration of residences. Build Environ 2020;168:106494. doi: 10.1016/j.buildenv.2019.106494
  35. Benabed A, Boulbair A, Limam K. Experimental study of the human walking-induced fine and ultrafine particle resuspension in a test chamber. Build Environ 2020;171:106655. doi: 10.1016/j.buildenv.2020.106655
  36. Qian J, Peccia J, Ferro AR. Walking-induced particle resuspension in indoor environments. Atmos Environ 2014;89:464–81. doi: 10.1016/j.atmosenv.2014.02.035
  37. Fu N, Kim MK, Huang L, Liu J, Chen B, Sharples S. Experimental and numerical analysis of indoor air quality affected by outdoor air particulate levels (PM1.0, PM2.5 and PM10), room infiltration rate, and occupants’ behaviour. Sci Total Environ 2022;851:158026. doi: 10.1016/j.scitotenv.2022.158026
  38. Nørgaard AW, Kudal JD, Kofoed-Sørensen V, Koponen IK, Wolkoff P. Ozone-initiated VOC and particle emissions from a cleaning agent and an air freshener: Risk assessment of acute airway effects. Environ Int 2014;68:209–18. doi: 10.1016/j.envint.2014.03.029
  39. Palmisani J, Nørgaard AW, Kofoed-Sørensen V, Clausen PA, De Gennaro G, Wolkoff P. Formation of ozone-initiated VOCs and secondary organic aerosol following application of a carpet deodorizer. Atmos Environ 2020;222:117149. doi: 10.1016/j.atmosenv.2019.117149
  40. Jung CC, Wu PC, Tseng CH, Su HJ. Indoor air quality varies with ventilation types and working areas in hospitals. Build Environ 2015;85:190–5. doi: 10.1016/j.buildenv.2014.11.026
  41. Wang X, Song M, Guo M, Chi C, Mo F, Shen X. Pollution levels and characteristics of phthalate esters in indoor air in hospitals. J Environ Sci 2015;37:67–74. doi: 10.1016/j.jes.2015.02.016
  42. Persily A. Development and application of an indoor carbon dioxide metric. Indoor Air 2022;32(7):e13059. doi: 10.1111/ina.13059
  43. Peixe J, Marques G. Low-cost IoT-enabled indoor air quality monitoring systems: A systematic review. J Ambient Intell Smart Environ 2024;16:167–80. doi: 10.3233/AIS-220577
  44. Astrid F, Beata Z, Van Den Nest Miriam, Julia E, Elisabeth P, Magda DE. The use of a UV-C disinfection robot in the routine cleaning process: a field study in an Academic hospital. Antimicrob Resist Infect Control 2021;10:84. doi: 10.1186/s13756-021-00945-4
  45. Febrianna FI, Rokhmalia F, Suryono H, Sulistio I, Sari E, Sucipto CD, Imami AD. Effect of cleaning process on physical and microbiological air quality in hospital environment: case study of Bhakti Dharma Husada Hospital. Jurnal Higiene Sanitasi 2025;5:1–8. doi: 10.36568/hisan.v5i1.101
  46. Boyce JM. Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals. Antimicrob Resist Infect Control 2016;5:10. doi: 10.1186/s13756-016-0111-x
  47. Hassan A, Zeeshan M. Microbiological indoor air quality of hospital buildings with different ventilation systems, cleaning frequencies and occupancy levels. Atmos Pollut Res 2022;13:101382. doi: 10.1016/j.apr.2022.101382
  48. Yuen J, Chung T, Loke A. Methicillin-resistant Staphylococcus aureus (MRSA) contamination in bedside surfaces of a hospital ward and the potential effectiveness of enhanced disinfection with an antimicrobial polymer surfactant. Int J Environ Res Public Health 2015;12:3026–41. doi: 10.3390/ijerph120303026
  49. Han JH, Sullivan N, Leas BF, Pegues DA, Kaczmarek JL, Umscheid CA. Cleaning hospital room surfaces to prevent health care - associated infections: A technical brief. Ann Intern Med 2015;163:598–607. doi: 10.7326/M15-1192
  50. Nadimpalli G, Johnson JK, Magder LS, Haririan A, Stevens D, Harris AD, O’Hara LM. Efficacy of a continuously active disinfectant wipe on the environmental bioburden in the intensive care unit: A randomized controlled study. Infect Control Hosp Epidemiol 2023;44:2036–43. doi: 10.1017/ice.2023.111
  51. Adams CE, Smith J, Watson V, Robertson C, Dancer SJ. Examining the association between surface bioburden and frequently touched sites in intensive care. J Hosp Infect 2017;95:76–80. doi: 10.1016/j.jhin.2016.11.002
  52. Uner A, Yilmaz F. Efficiency of laundry polymers containing liquid detergents for hard surface cleaning. J Surfact Deterg 2015;18:213–24. doi: 10.1007/s11743-014-1634-x
  53. Zargar B, Sattar SA. Decontamination of high-touch environmental surfaces (HITES) by wiping: quantitative assessment of a carrier platform simulating pathogen removal, inactivation and transfer in the field. Lett Appl Microbiol 2023;76(2):ovac073. doi: 10.1093/lambio/ovac073
  54. Ramm L, Siani H, Wesgate R, Maillard J-Y. Pathogen transfer and high variability in pathogen removal by detergent wipes. Am J Infect Control 2015;43:724–8. doi: 10.1016/j.ajic.2015.03.024
  55. Song X, Vossebein L, Zille A. Efficacy of disinfectant-impregnated wipes used for surface disinfection in hospitals: a review. Antimicrob Resist Infect Control 2019;8(1):139. doi: 10.1186/s13756-019-0595-2
  56. Mizuno M, Matsuda J, Watanabe K, Shimizu N, Sekiya I. Effect of disinfectants and manual wiping for processing the cell product changeover in a biosafety cabinet. Regen Ther 2023:22:169–75. doi: 10.1016/j.reth.2023.01.009
  57. Maillard JY, Pascoe M. Disinfectants and antiseptics: mechanisms of action and resistance. Nat Rev Microbiol 2024;22:4–17. doi: 10.1038/s41579-023-00958-3
  58. Oh E, Shin H, Han S, Do SJ, Shin Y, Pi JH, Kim Y, Ko D-H, Lee KH, Choi HJ. Enhanced biocidal efficacy of alcohol based disinfectants with salt additives. Sci Rep 2025;15:3950. doi: 10.1038/s41598-025-87811-0
  59. Weber DJ, Consoli SA, Rutala WA. Occupational health risks associated with the use of germicides in health care. Am J Infect Control 2016;44(5 Suppl):e85–9. doi: 10.1016/j.ajic.2015.11.030
  60. Horn H, Niemeyer B. Corrosion inhibition of peracetic acid-based disinfectants. Chem Eng Technol 2022;45:129–34. doi: 10.1002/ceat.202100144
  61. Vargas-Cuebas GG, Sanchez CA, Brayton SR, Nikoloff A, Masters R, Minbiole KPC, Wuest WM. Exploring the correlation of dynamic surface tension with antimicrobial activities of quaternary ammonium-based disinfectants. ChemMedChem 2024;19(16):e202400262. doi: 10.1002/cmdc.202400262
  62. Miranda RC, Schaffner DW. Longer contact times increase cross-contamination of Enterobacter aerogenes from surfaces to food. Appl Environ Microbiol 2016;82:6490–6. doi: 10.1128/AEM.01838-16
  63. Cutts TA, Kasloff SB, Krishnan J, Nims RW, Theriault SS, Rubino JR, Ijaz MK. Comparison of the efficacy of disinfectant preimpregnated wipes for decontaminating stainless steel carriers experimentally inoculated with Ebola virus and vesicular stomatitis virus. Front Public Health 2021;9:657443. doi: 10.3389/fpubh.2021.657443
  64. Wei W, Boumier J, Wyart G, Ramalho O, Mandin C. Cleaning practices and cleaning products in nurseries and schools: to what extent can they impact indoor air quality? Indoor Air 2016;26:517–25. doi: 10.1111/ina.12236
  65. Lay AM, Saunders R, Lifshen M, Breslin FC, LaMontagne AD, Tompa E, Smith PM. The relationship between occupational health and safety vulnerability and workplace injury. Safety Sci 2017;94:85–93. doi: 10.1016/j.ssci.2016.12.021
  66. Traverse M, Aceto H. Environmental cleaning and disinfection. Vet Clin North Am Small Anim Pract 2015;45:299–330. doi: 10.1016/j.cvsm.2014.11.011
  67. Memarzadeh F. A review of recent evidence for utilizing ultraviolet irradiation technology to disinfect both indoor air and surfaces. Appl Biosaf 2021;26:52–6. doi: 10.1089/apb.20.0056
  68. ARHAI Scotland - Antimicrobial Resistance and Healthcare Associated Infection. Existing and emerging technologies used for the decontamination of the healthcare environment: Steam. NHS-National Services Scotland; 2021 [displayed 21 November 2025]. Available at https://www.nss.nhs.scot/media/2166/novel-tech-steam-literature-revi.pdf
  69. Oztoprak N, Kizilates F, Percin D. Comparison of steam technology and a two-step cleaning (water/detergent) and disinfecting (1,000 resp. 5,000 ppm hypochlorite) method using microfiber cloth for environmental control of multidrug-resistant organisms in an intensive care unit. GMS Hyg Infect Control 2019;14:Doc15. doi: 10.3205/dgkh000330
  70. Kumkrong P, Scoles L, Brunet Y, Baker S, Mercier PHJ, Poirier D. Evaluation of hydrogen peroxide and ozone residue levels on N95 masks following chemical decontamination. J Hosp Infect 2021:111:117–24. doi: 10.1016/j.jhin.2021.02.018
  71. Kimura T, Yahata H, Uchiyama Y. Examination of material compatibilities with ionized and vaporized hydrogen peroxide decontamination. J Am Assoc Lab Anim Sci 2020;59:703–11. doi: 10.30802/AALAS-JAALAS-19-000165
  72. Pottage T, Macken S, Walker JT, Bennett AM. Meticillin-resistant Staphylococcus aureus is more resistant to vaporized hydrogen peroxide than commercial Geobacillus stearothermophilus biological indicators. J Hosp Infect 2012;80:41–5. doi: 10.1016/j.jhin.2011.11.001
  73. Bosco R, Cevenini G, Gambelli S, Nante N, Messina G. Improvement and standardization of disinfection in hospital theatre with ultraviolet-C technology. J Hosp Infect 2022;128:19–25. doi: 10.1016/j.jhin.2022.07.006
  74. Nagpal A, Dhankhar D, Cesario TC, Li R, Chen J, Rentzepis PM. Thymine dissociation and dimer formation: A Raman and synchronous fluorescence spectroscopic study. Proc Natl Acad Sci USA 2021;118(6):e2025263118. doi: 10.1073/pnas.2025263118
  75. Nguyen TT, Johnson GR, Bell SC, Knibbs LD. A systematic literature review of indoor air disinfection techniques for airborne bacterial respiratory pathogens. Int J Environ Res Public Health 2022;19(3):1197. doi: 10.3390/ijerph19031197
  76. Boyce JM, Donskey CJ. Understanding ultraviolet light surface decontamination in hospital rooms: A primer. Infect Control Hosp Epidemiol 2019;40:1030–5. doi: 10.1017/ice.2019.161
  77. Santos TD, De Castro LF. Evaluation of a portable Ultraviolet C (UV-C) device for hospital surface decontamination. Photodiagnosis Photodyn Ther 2021;33:102161. doi: 10.1016/j.pdpdt.2020.102161
  78. Otter JA, Yezli S, Barbut F, Perl TM. An overview of automated room disinfection systems: When to use them and how to choose them. In: Walker J, editor. Decontamination in hospitals and healthcare. 2nd ed. Woodhead Publishing Series in Biomaterials 2020. p. 323–69 [displayed 31 October 2025]. Available at https://linkinghub.elsevier.com/retrieve/pii/B9780081025659000157
  79. Nerandzic MM, Fisher CW, Donskey CJ. Sorting through the wealth of options: comparative evaluation of two ultraviolet disinfection systems. PLoS One 2014;9(9):e107444. doi: 10.1371/journal.pone.0107444
  80. Weber DJ, Kanamori H, Rutala WA. ‘No touch’ technologies for environmental decontamination: focus on ultraviolet devices and hydrogen peroxide systems. Curr Opin Infect Dis 2016;29:424–31. doi: 10.1097/QCO.0000000000000284
  81. Elgujja A, Altalhi HaH, Ezreqat S. Review of the efficacy of UVC for surface decontamination. J Nat Sci Med 2020;3:8–12. doi: 10.20944/preprints201908.0257.v1
  82. Dai T, Kharkwal GB, Zhao J, Denis TGSt, Wu Q, Xia Y, Huang L, Sharma SK, d’Enfert C, Hamblin MR. Ultraviolet-C light for treatment of Candida albicans burn infection in mice. Photochem Photobiol 2011;87:342–9. doi: 10.1111/j.1751-1097.2011.00886.x
  83. Strahl H, Errington J. Bacterial membranes: structure, domains, and function. Annu Rev Microbiol 2017;71:519–38. doi: 10.1146/annurev-micro-102215-095630
  84. Heilingloh CS, Aufderhorst UW, Schipper L, Dittmer U, Witzke O, Yang D, Zheng X, Sutter K, Trilling M, Alt M, Steinmann E, Krawczyk A. Susceptibility of SARS-CoV-2 to UV irradiation. Am J Infect Control 2020;48:1273–5. doi: 10.1016/j.ajic.2020.07.031
  85. Gupta S, Maclean M, Anderson JG, MacGregor SJ, Meek RMD, Grant MH. Inactivation of micro-organisms isolated from infected lower limb arthroplasties using high-intensity narrow-spectrum (HINS) light. Bone Joint J 2015;97-B(2):283–8. doi: 10.1302/0301-620X.97B2.35154
  86. Maclean M, McKenzie K, Anderson JG, Gettinby G, MacGregor SJ. 405 nm light technology for the inactivation of pathogens and its potential role for environmental disinfection and infection control. J Hosp Infect 2014;88:1–11. doi: 10.1016/j.jhin.2014.06.004
  87. Luongo JC, Fennelly KP, Keen JA, Zhai ZJ, Jones BW, Miller SL. Role of mechanical ventilation in the airborne transmission of infectious agents in buildings. Indoor Air 2016;26:666–78. doi: 10.1111/ina.12267
  88. Lin WR, Ho YH, Lee WK, Cheng HM, Wang PH. Spatiotemporal distribution and the passive dispersal of fungal spores through HVAC systems. Aerobiologia 2022;38:13–21. doi: 10.1007/s10453-021-09730-7
  89. Nardell EA. Indoor environmental control of tuberculosis and other airborne infections. Indoor Air 2016;26:79–87. doi: 10.1111/ina.12232
  90. Kek HY, Mohd Saupi SB, Tan H, Dzarfan Othman MH, Nyakuma BB, Goh PS, Hamood Altowayti WA, Qaid A, Abdul Wahab NH, Lee CH, Lubis A, Wong SL, Wong KY. Ventilation strategies for mitigating airborne infection in healthcare facilities: A review and bibliometric analysis (1993–2022). Energy Build 2023;295:113323. doi: 10.1016/j.enbuild.2023.113323
  91. Escombe AR, Ticona E, Chávez-Pérez V, Espinoza M, Moore DAJ. Improving natural ventilation in hospital waiting and consulting rooms to reduce nosocomial tuberculosis transmission risk in a low resource setting. BMC Infect Dis 2019;19:88. doi: 10.1186/s12879-019-3717-9
  92. Vignolo A, Gómez AP, Draper M, Mendina M. Quantitative assessment of natural ventilation in an elementary school classroom in the context of COVID-19 and its impact in airborne transmission. Appl Sci 2022;12:9261. doi: 10.3390/app12189261
  93. Fonseca A, Abreu I, Guerreiro MJ, Abreu C, Silva R, Barros N. Indoor air quality and sustainability management - case study in three Portuguese healthcare units. Sustainability 2018;11:101. doi: 10.3390/su11010101
  94. Gola M, Settimo G, Capolongo S. Indoor air quality in inpatient environments: A systematic review on factors that influence chemical pollution in inpatient wards. J Healthc Eng 2019:8358306. doi: 10.1155/2019/8358306
  95. Vijaykrishna G, Balaji G. Impact of indoor temperature and humidity in IAQ of health care buildings. Civil Eng Architect 2023;11:1273–9. doi: 10.13189/cea.2023.110313
  96. Feng X, Zhang Y, Xu Z, Song D, Cao G, Liang L. Aerosol containment by airflow in biosafety laboratories. J Biosaf Biosecur 2019;1:63–7. doi: 10.1016/j.jobb.2018.12.009
  97. Hamdani H, Sabri FS, Harapan H, Syukri M, Razali R, Kurniawan R, Irwansyah I, Sofyan SE, Mahlia TMI, Rizal S. HVAC control systems for a negative air pressure isolation room and its performance. Sustainability 2022;14:11537. doi: 10.3390/su141811537
  98. Izadyar N, Miller W. Ventilation strategies and design impacts on indoor airborne transmission: A review. Build Environ 2022;218:109158. doi: 10.1016/j.buildenv.2022.109158
  99. Navaratnam S, Nguyen K, Selvaranjan K, Zhang G, Mendis P, Aye L. Designing post COVID-19 buildings: approaches for achieving healthy buildings. Buildings 2022;12:74. doi: 10.3390/buildings12010074
  100. Majchrzycka K, Okrasa M, Skóra J, Gutarowska B. Evaluation of the survivability of microorganisms deposited on filtering respiratory protective devices under varying conditions of humidity. Int J Environ Res Public Health 2016;13:98. doi: 10.3390/ijerph13010098
  101. European Committee for Standardization. EN 1822-1: High efficiency air filters (EPA, HEPA and ULPA) – Part 1: Classification, performance testing, marketing [displayed 3 December 2025]. Available at https://www.airum.com/frontend/immagini/files/EN%201822-1.PDF
  102. Xiang J, Weschler CJ, Mo J, Day D, Zhang J, Zhang Y. Ozone, electrostatic precipitators, and particle number concentrations: correlations observed in a real office during working hours. Environ Sci Technol 2016;50:10236–44. doi: 10.1021/acs.est.6b03069
  103. Kaushik AK, Dhau JS. Photoelectrochemical oxidation assisted air purifiers; perspective as potential tools to control indoor SARS-CoV-2 Exposure. Appl Surf Sci Adv 2022;9:100236. doi: 10.1016/j.apsadv.2022.100236
  104. ASHRAE. ANSI/ASHRAE/ASHE Addendum a to ANSI/ASHRAE/ASHE Standard 170-2017 – Ventilation of Health Care Facilities, 2020 [displayed 3 April 2025]. Available at https://www.ashrae.org/file%20library/technical%20resources/standards%20and%20guidelines/standards%20errata/standards/170_2017_a_20200901.pdf
  105. Song Y, Wu S, Yan YY. Control strategies for indoor environment quality and energy efficiency – a review. Int J Low-Carbon Tech 2015;10:305–12. doi: 10.1093/ijlct/ctt051
  106. Rosenberg M, Ilić K, Juganson K, Ivask A, Ahonen M, Vinković Vrček I, Kahru A. Potential ecotoxicological effects of antimicrobial surface coatings: a literature survey backed up by analysis of market reports. PeerJ 2019:7:e6315. doi: 10.7717/peerj.6315
  107. Levana O, Hong S, Kim SH, Jeong JH, Hur SS, Lee JW, Kwon KS, Hwang Y. A novel strategy for creating an antibacterial surface using a highly efficient electrospray-based method for silica deposition. Int J Mol Sci 2022;23:513. doi: 10.3390/ijms23010513
  108. Adlhart C, Verran J, Azevedo NF, Olmez H, Keinänen-Toivola MM, Gouveia I, Melo LF, Crijns F. Surface modifications for antimicrobial effects in the healthcare setting: a critical overview. J Hosp Infect 2018;99:239–49. doi: 10.1016/j.jhin.2018.01.018
  109. Mitra D, Kang ET, Neoh KG. Antimicrobial copper-based materials and coatings: potential multifaceted biomedical applications. ACS Appl Mater Interfaces 2020;12:21159–82. doi: 10.1021/acsami.9b17815
  110. Chyderiotis S, Legeay C, Verjat-Trannoy D, Le Gallou F, Astagneau P, Lepelletier D. New insights on antimicrobial efficacy of copper surfaces in the healthcare environment: a systematic review. Clin Microbiol Infect 2018;24:1130–8. doi: 10.1016/j.cmi.2018.03.0341130–8
  111. Liao C, Li Y, Tjong SC. Bactericidal and cytotoxic properties of silver nanoparticles. Int J Mol Sci 2019;20:449. doi: 10.3390/ijms20020449
  112. Hsueh YH, Lin KS, Ke WJ, Hsieh CT, Chiang CL, Tzou DY, Liu ST. The antimicrobial properties of silver nanoparticles in Bacillus subtilis are mediated by released Ag+ ions. PLoS One 2015;10(12):e0144306. doi: 10.1371/journal.pone.0144306
  113. Giachino A, Waldron KJ. Copper tolerance in bacteria requires the activation of multiple accessory pathways. Mol Microbiol 2020;114:377–90. doi: 10.1111/mmi.14522
  114. Martinaga Pintarić L, Somogi Škoc M, Ljoljić Bilić V, Pokrovac I, Kosalec I, Rezić I. Synthesis, modification and characterization of antimicrobial textile surface containing ZnO nanoparticles. Polymers (Basel) 2020;12:1210. doi: 10.3390/polym12061210
  115. Evstropiev SK, Dukelskii KV, Karavaeva AV, Vasilyev VN, Kolobkova EV, Nikonorov NV, Evstropyev KS. Transparent bactericidal ZnO nanocoatings. J Mater Sci Mater Med 2017;28:102. doi: 10.1007/s10856-017-5909-4
  116. Liao C, Li Y, Tjong SC. Visible-light active titanium dioxide nanomaterials with bactericidal properties. Nanomaterials (Basel) 2020;10:124. doi: 10.3390/nano10010124
  117. Jalvo B, Faraldos M, Bahamonde A, Rosal R. Antimicrobial and antibiofilm efficacy of self-cleaning surfaces functionalized by TiO2 photocatalytic nanoparticles against Staphylococcus aureus and Pseudomonas putida. J Hazard Mater 2017;340:160–70. doi: 10.1016/j.jhazmat.2017.07.005
  118. Serov DA, Gritsaeva AV, Yanbaev FM, Simakin AV, Gudkov SV. Review of antimicrobial properties of titanium dioxide nanoparticles. Int J Mol Sci 2024;25(19):10519. doi: 10.3390/ijms251910519
  119. Yan D, Wu X, Pei J, Wu C, Wang X, Zhao H. Construction of g-C3N4/TiO2/Ag composites with enhanced visible-light photocatalytic activity and antibacterial properties. Ceram Int 2020;46:696–702. doi: 10.1016/j.ceramint.2019.09.022
  120. Krumdieck SP, Boichot R, Gorthy R, Land JG, Lay S, Gardecka AJ, Polson MIJ, Wasa A, Aitken JE, Heinemann JA, Renou G, Berthomé G, Charlot F, Encinas T, Braccini M, Bishop CM. Nanostructured TiO2 anatase-rutile-carbon solid coating with visible light antimicrobial activity. Sci Rep 2019;9:1883. doi: 10.1038/s41598-018-38291-y
  121. Wainwright M, Maisch T, Nonell S, Plaetzer K, Almeida A, Tegos GP, Hamblin MR. Photoantimicrobials - are we afraid of the light? Lancet Infect Dis 2017;17(2):e49–55. doi: 10.1016/S1473-3099(16)30268-7
  122. Eichner A, Holzmann T, Eckl DB, Zeman F, Koller M, Huber M, Pemmerl S, Schneider-Brachert W, Bäumler W. Novel photodynamic coating reduces the bioburden on near-patient surfaces thereby reducing the risk for onward pathogen transmission: a field study in two hospitals. J Hosp Infect 2020;104:85–91. doi: 10.1016/j.jhin.2019.07.016
  123. Wang KK, Song S, Jung SJ, Hwang JW, Kim MG, Kim JH, Sung J, Lee JK, Kim YR. Lifetime and diffusion distance of singlet oxygen in air under everyday atmospheric conditions. Phys Chem Chem Phys 2020;22:21664–71. doi: 10.1039/d0cp00739k
  124. Tamimi AH, Carlino S, Gerba CP. Long-term efficacy of a self-disinfecting coating in an intensive care unit. Am J Infect Control 2014;42:1178–81. doi: 10.1016/j.ajic.2014.07.005
  125. Kowal K, Cronin P, Dworniczek E, Zeglinski J, Tiernan P, Wawrzynska M, Podbielska H, Tofail SAM. Biocidal effect and durability of nano-TiO2 coated textiles to combat hospital acquired infections. RSC Adv 2014;4:19945. doi: 10.1039/c4ra02759k
  126. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. 1st ed. Geneva: World Health Organization; 2021.
  127. Shahid S, Brown DJ, Wright P, Khasawneh AM, Taylor B, Kaiwartya O. Innovations in air quality monitoring: sensors, IoT and future research. Sensors (Basel) 2025;25:2070. doi: 10.3390/s25072070
  128. Liu Z, Wang G, Zhao L, Yang G. Multi-points indoor air quality monitoring based on internet of things. IEEE Access 2021;9:70479–92. doi: 10.1109/ACCESS.2021.3073681
  129. Buehler C, Xiong F, Zamora ML, Skog KM, Kohrman-Glaser J, Colton S, McNamara M, Ryan K, Redlich C, Bartos M, Wong B, Kerkez B, Koehler K, Gentner DR. Stationary and portable multipollutant monitors for high-spatiotemporal-resolution air quality studies including online calibration. Atmos Meas Tech 2021;14:995–1013. doi: 10.5194/amt-14-995-2021
  130. Guerrero-Ulloa G, Andrango-Catota A, Abad-Alay M, Hornos MJ, Rodríguez-Domínguez C. Development and assessment of an indoor air quality control IoT-based system. Electronics 2023;12:608. doi: 10.3390/electronics12030608
  131. Benammar M, Abdaoui A, Ahmad S, Touati F, Kadri A. A modular IoT platform for real-time indoor air quality monitoring. Sensors (Basel) 2018;18:581. doi: 10.3390/s18020581
  132. Tsang TW, Mui KW, Wong LT, Chan ACY, Chan RCW. Real-time indoor environmental quality (IEQ) monitoring using an IoT-based wireless sensing network. Sensors (Basel) 2024;24(21):6850. doi: 10.3390/s24216850
  133. Panicker D. Smart air purifier with air quality monitoring system. Int J Res Appl Sci Eng Technol 2020;8:1511–5. doi: 10.22214/ijraset.2020.5244
  134. Palmisani J, Di Gilio A, Viana M, De Gennaro G, Ferro A. Indoor air quality evaluation in oncology units at two European hospitals: Low-cost sensors for TVOCs, PM2.5 and CO2 real-time monitoring. Build Environ 2021;205:108237. doi: 10.1016/j.buildenv.2021.108237
  135. Allsbrook S. Where to Place Air Quality Monitors for WELL Certification, 2025 [displayed 26 November 2025]. Available at https://learn.kaiterra.com/en/resources/where-to-place-air-quality-monitors-for-well-certification#:~:text=Monitors%20must%20be%20placed%20in,about%20WELL’s%20ceiling%20placement%20guidelines
  136. Li R, Bao L, Chen L, Zha C, Dong J, Qi N, Tang R, Lu Y, Wang M, Huang R, Yan K, Su Y, Wu F. Accelerated aging of lithium-ion batteries: bridging battery aging analysis and operational lifetime prediction. Sci Bull (Beijing) 2023;68:3055–79. doi: 10.1016/j.scib.2023.10.029
  137. Pietraru RN, Olteanu A, Adochiei IR, Adochiei FC. Reengineering indoor air quality monitoring systems to improve end-user experience. Sensors (Basel) 2024;24:2659. doi: 10.3390/s24082659
  138. Saini J, Dutta M, Marques G. A comprehensive review on indoor air quality monitoring systems for enhanced public health. Sustain Environ Res 2020;30:6. doi: 10.1186/s42834-020-0047-y
  139. Zhang H, Srinivasan R. A systematic review of air quality sensors, guidelines, and measurement studies for indoor air quality management. Sustainability 2020;12:9045. doi: 10.3390/su12219045
  140. Vasquez Cubas JJ, Torres Huaman RM, Santos López FM, Tejada Quispe O. PM10 and PM2.5 particulate matter monitoring systems: a systematic review of the literature. In: Garcia MV, Gordón-Gallegos C, Salazar-Ramírez A, Nuñez C, editors. Proceedings of the International Conference on Computer Science, Electronics and Industrial Engineering (CSEI 2023). Lecture Notes in Networks and Systems. Vol. 797. Cham: Springer Nature Switzerland; 2024. p. 281–95.
  141. Licina D, Wargocki P, Pyke C, Altomonte S. The future of IEQ in green building certifications. Build Cities 2021;2:907–27. doi: 10.5334/bc.148/
  142. Aguado A, Rodríguez-Sufuentes S, Verdugo F, Rodríguez-López A, Figols M, Dalheimer J, Gómez-López A, González-Colom R, Badyda A, Fermoso J. Verification and usability of indoor air quality monitoring tools in the framework of health-related studies. Air 2025;3:3. doi: 10.3390/air3010003
  143. Pitarma R, Marques G, Ferreira BR. Monitoring indoor air quality for enhanced occupational health. J Med Syst 2017;41:23. doi: 10.1007/s10916-016-0667-2
  144. Shen H, Hou W, Zhu Y, Zheng S, Ainiwaer S, Shen G, Chen Y, Cheng H, Hu J, Wan Y, Tao S. Temporal and spatial variation of PM2.5 in indoor air monitored by low-cost sensors. Sci Total Environ 2021;770:145304. doi: 10.1016/j.scitotenv.2021.145304
  145. Wang Y, Li J, Jing H, Zhang Q, Jiang J, Biswas P. Laboratory evaluation and calibration of three low-cost particle sensors for particulate matter measurement. Aerosol Sci Technol 2015;49:1063–77. doi: 10.1080/02786826.2015.1100710
  146. Diez S, Lacy S, Coe H, Urquiza J, Priestman M, Flynn M, Marsden N, Martin NA, Gillott S, Bannan T, Edwards PM. Long-term evaluation of commercial air quality sensors: an overview from the QUANT (Quantification of Utility of Atmospheric Network Technologies) study. Atmos Meas Tech 2024;17:3809–27. doi: 10.5194/amt-17-3809-2024
  147. Bi J, Wildani A, Chang HH, Liu Y. Incorporating low-cost sensor measurements into high-resolution PM2.5 modeling at a large spatial scale. Environ Sci Technol 2020;54:2152–62. doi: 10.1021/acs.est.9b06046
  148. Bittner AS, Cross ES, Hagan DH, Malings C, Lipsky E, Grieshop AP. Performance characterization of low-cost air quality sensors for off-grid deployment in rural Malawi. Atmos Meas Tech 2022;15:3353–76. doi: 10.5194/amt-15-3353-2022
  149. Crilley LR, Shaw M, Pound R, Kramer LJ, Price R, Young S, Lewis AC, Pope FD. Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring. Atmos Meas Tech 2018;11:709–20. doi: 10.5194/amt-11-709-2018
  150. Farquhar AK, Henshaw GS, Williams DE. Understanding and correcting unwanted influences on the signal from electrochemical gas sensors. ACS Sens 2021;6:1295–304. doi: 10.1021/acssensors.0c02589
  151. Williams DE. Electrochemical sensors for environmental gas analysis. Curr Opin Electrochem 2020;22:145–53. doi: 10.1016/j.coelec.2020.06.006
  152. Wang Z, Ma L, Yang R, Ye J. Development of a portable and low-cost sensor system for air pollution measurement. Aerosol Sci Eng 2025 [displayed 26 November 2025]. Available at https://link.springer.com/10.1007/s41810-025-00284-6
  153. Nalakurthi NVSR, Abimbola I, Ahmed T, Anton I, Riaz K, Ibrahim Q, Banerjee A, Tiwari A, Gharbia S. Challenges and opportunities in calibrating low-cost environmental sensors. Sensors (Basel) 2024;24:3650. doi: 10.3390/s24113650
  154. Griffith C. Chapter 44 - Surface sampling and the detection of contamination. In: Lelieveld H, Holah J, Gabrić D, editors. Handbook of hygiene control in the food industry. 2nd ed. Woodhead Publishing Series in Food Science, Technology and Nutrition: 2016. p. 673–96. doi: 10.1016/C2014-0-01825-4
  155. Sanna T, Dallolio L, Raggi A, Mazzetti M, Lorusso G, Zanni A, Farruggia P, Leoni E. ATP bioluminescence assay for evaluating cleaning practices in operating theatres: applicability and limitations. BMC Infect Dis 2018;18:583. doi: 10.1186/s12879-018-3505-y
  156. Messina G, Ceriale E, Nante N, Manzi P. Effectiveness of ATP bioluminescence to assess hospital cleaning: a review. Eur J Public Health 2014;24(Suppl 2):cku163.030. doi: 10.1093/eurpub/cku163.030
  157. Öz P, Özgen Arun Ö. Evaluating the performance of ATP bioluminescence method by comparison with classical cultural method. Food Health 2019;5:77–82. doi: 10.3153/FH19008
  158. Omidbakhsh N, Ahmadpour F, Kenny N. How reliable are ATP bioluminescence meters in assessing decontamination of environmental surfaces in healthcare settings? PLoS One 2014;9(6):e99951. doi: 10.1371/journal.pone.0099951
  159. Ishino N, Miyaji C, Ogata M, Inada M, Nagata M, Shimamoto M. Applicability of the ATP assay in monitoring the cleanliness of hospital environments. Infect Dis Health 2024;29:32–8. doi: 10.1016/j.idh.2023.09.034
  160. Sundell N, Andersson LM, Brittain-Long R, Lindh M, Westin J. A four year seasonal survey of the relationship between outdoor climate and epidemiology of viral respiratory tract infections in a temperate climate. J Clin Virol 2016;84:59–63. doi: 10.1016/j.jcv.2016.10.005.
  161. Kim D, Shin D, Kim D, Kwon B, Min C, Geevarghese G, Seunghyun Kim, Hwang J, Seo SC. Revisiting the joint effect of temperature and relative humidity on airborne mold and bacteria concentration in indoor environment: A machine learning approach. Build Environ 2025;270:112548. doi: 10.1016/j.buildenv.2025.112548
  162. Alqarni Z, Rezgui Y, Petri I, Ghoroghi A. Viral infection transmission and indoor air quality: A systematic review. Sci Total Environ 2024:923:171308. doi: 10.1016/j.scitotenv.2024.171308
  163. Kakoulli C, Kyriacou A, Michaelides MP. A Review of field measurement studies on thermal comfort, indoor air quality and virus risk. Atmosphere 2022;13:191. doi: 10.3390/atmos13020191
  164. Ramos J, Belo J, Silva D, Diogo C, Almeida SM, Canha N. Influence of indoor air quality on sleep quality of university students in Lisbon. Atmos Pollut Res 2022;13:101301. doi: 10.1016/j.apr.2021.101301
  165. Laurent MR, Frans J. Monitors to improve indoor air carbon dioxide concentrations in the hospital: A randomized crossover trial. Sci Total Environ 2022;806(Pt 3):151349. doi: 10.1016/j.scitotenv.2021.151349
  166. Peters T, Zhen C. Evaluating indoor air quality monitoring devices for healthy homes. Buildings 2023;14:102. doi: 10.3390/buildings14010102
  167. Demanega I, Mujan I, Singer BC, Anđelković AS, Babich F, Licina D. Performance assessment of low-cost environmental monitors and single sensors under variable indoor air quality and thermal conditions. Build Environ 2021;187:107415. doi: 10.1016/j.buildenv.2020.107415
  168. Jaimini U, Banerjee T, Romine W, Thirunarayan K, Sheth A, Kalra M. Investigation of an indoor air quality sensor for asthma management in children. IEEE Sens Lett 2017;1:6000204. doi: 10.1109/LSENS.2017.2691677
  169. Baldelli A. Evaluation of a low-cost multi-channel monitor for indoor air quality through a novel, low-cost, and reproducible platform. Measurement: Sensors 2021;17:100059. doi: 10.1016/j.measen.2021.100059
  170. Shah KB, Kim D, Pinakana SD, Hobosyan M, Montes A, Raysoni AU. Evaluating indoor air quality in residential environments: A atudy of PM2.5 and CO2 dynamics using low-cost sensors. Environments 2024;11:237. doi: 10.3390/environments11110237
  171. Dugheri S, Massi D, Mucci N, Berti N, Cappelli G, Arcangeli G. Formalin safety in anatomic pathology workflow and integrated air monitoring systems for the formaldehyde occupational exposure assessment. Int J Occup Med Environ Health 2021;34:319–38. doi: 10.13075/ijomeh.1896.01649
  172. Embio Diagnostics Ltd. Airbeld [displayed 25 November 2025]. Available at https://airbeld.com/
  173. PCE Instruments. [Manuale di istruzioni - Misuratore di qualità dell’aria PCE-AQD 20, in Italian]. PCE Instruments; 2021 [displayed 25 November 2025]. Available at https://www.pce-instruments.com/italiano/api/getartfile?_fnr=1803091&_dsp=inline
  174. Gulan L, Stajic JM, Spasic D, Forkapic S. Radon levels and indoor air quality after application of thermal retrofit measures - a case study. Air Qual Atmos Health 2023;16:363–73. doi: 10.1007/s11869-022-01278-w
  175. Atfeh B, Kristóf E, Mészáros R, Barcza Z. Evaluating the effect of data processing techniques on indoor air quality assessment in Budapest [displayed 25 Noveber 2025]. Available at http://nimbus.elte.hu/oktatas/metfuzet/EMF033/PDF/01_Atfeh-et-al.pdf
  176. Shittu AI, Pringle KJ, Arnold SR, Pope RJ, Graham AM, Reddington C, Rigby R, McQuaid JB: Performance evaluation of Atmotube PRO sensors for air quality measurements in an urban location. Atmos Meas Tech 2025;18:817–28. doi: 10.5194/amt-18-817-2025
  177. AVIGILON. HALO 3C Smart Sensor. Motorola Solutions [displayed 3 April 2025]. Available at https://www.avigilon.com/sensors/halo-smart-sensor-3c
  178. Manibusan S, Mainelis G. Performance of four consumer-grade air pollution measurement devices in different residences. Aerosol Air Qual Res 2020;20:217–30. doi: 10.4209/aaqr.2019.01.0045
  179. SMART AIR. QP Pro 2 Air Quality Monitor - 999RMB [displayed 3 April 2025]. Available at https://smartairfilters.com/cn/en/product/qp-pro-plus-air-monitor/
  180. Rodríguez Rama JA, Presa Madrigal L, Costafreda Mustelier JL, García Laso A, Maroto Lorenzo J, Martín Sánchez DA. Monitoring and ensuring worker health in controlled environments using economical particle sensors. Sensors (Basel) 2024;24:5267. doi: 10.3390/s24165267
  181. Lin C, Gillespie J, Schuder MD, Duberstein W, Beverland IJ, Heal MR. Evaluation and calibration of Aeroqual series 500 portable gas sensors for accurate measurement of ambient ozone and nitrogen dioxide. Atmos Environ 2015;100:111–6. doi: 10.1016/j.atmosenv.2014.11.002
  182. Moda HM, King D. Assessment of occupational safety and hygiene perception among Afro-Caribbean hair salon operators in Manchester, United Kingdom. Int J Environ Res Public Health 2019;16:3284. doi: 10.3390/ijerph16183284
  183. Al-Rawi M, Al-Jumaily AM, Lazonby A. Did you just cough? Visualization of vapor diffusion in an office using computational fluid dynamics analysis. Int J Environ Res Public Health 2022;19:9928. doi: 10.3390/ijerph19169928
  184. Sauermann. AQ 110 - Air quality carbon dioxide monitor [displayed 3 April 2025]. Available at https://sauermanngroup.com/sites/default/files/files/DS_portable_AQ110_EN-US_01-10-24_0.pdf
DOI: https://doi.org/10.2478/aiht-2025-76-4013 | Journal eISSN: 1848-6312 | Journal ISSN: 0004-1254
Language: English, Croatian, Slovenian
Page range: 222 - 241
Submitted on: Jun 1, 2025
|
Accepted on: Dec 1, 2025
|
Published on: Dec 30, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Giovanni Cappelli, Ilaria Rapi, Stefano Dugheri, Niccolò Fanfani, Veronica Traversini, Antonio Baldassarre, Anna Korelidou, Maali-Amel Mersel, Filippo Baravelli, Marinos Louka, Nicola Mucci, Lina Kourtella, published by Institute for Medical Research and Occupational Health
This work is licensed under the Creative Commons Attribution 4.0 License.