Have a personal or library account? Click to login
Chlorogenic acid protects against cisplatin-induced testicular damage: a biochemical and histological study Cover

Chlorogenic acid protects against cisplatin-induced testicular damage: a biochemical and histological study

Open Access
|Jun 2025

References

  1. Jin Z, Zhao-Xia L, Fan-Ke P, Wen-Juan Z, Min-Li W, Han-Yi Z. Progress in the study of reproductive toxicity of platinum-based antitumor drugs and their means of prevention. Front Pharmacol 2024;15:1327502. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3389/fphar.2024.1327502" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fphar.2024.1327502</a></pub-id>
  2. Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M, Kroemer G. Molecular mechanisms of cisplatin resistance. Oncogene 2012;31:1869–83. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1038/onc.2011.384" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/onc.2011.384</a></pub-id>
  3. Patel S, Sathyanathan V, Salaman SD. Molecular mechanisms underlying cisplatin-induced nephrotoxicity and the potential ameliorative effects of essential oils: A comprehensive review. Tissue Cell 2024;88:102377. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.tice.2024.102377" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.tice.2024.102377</a></pub-id>
  4. Zhou J, Kang Y, Chen L, Wang H, Liu J, Zeng S, Yu L. The drugresistance mechanisms of five platinum-based antitumor agents. Front Pharmacol 2020;11:343. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3389/fphar.2020.00343" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fphar.2020.00343</a></pub-id>
  5. Katanić Stanković JS, Selaković D, Rosić G. Oxidative damage as a fundament of systemic toxicities induced by cisplatin-the crucial limitation or potential therapeutic target? Int J Mol Sci 2023;24(19):14574. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/ijms241914574" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/ijms241914574</a></pub-id>
  6. Rahimi A, Asadi F, Rezghi M, Kazemi S, Soorani F, Memariani Z. Natural products against cisplatin-induced male reproductive toxicity: A comprehensive review. J Biochem Mol Toxicol 2022;36(3):e22970. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1002/jbt.22970" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/jbt.22970</a></pub-id>
  7. Gómez-Sierra T, Eugenio-Pérez D, Sánchez-Chinchillas A, Pedraza-Chaverri J. Role of food-derived antioxidants against cisplatin induced-nephrotoxicity. Food Chem Toxicol 2018;120:230–42. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.fct.2018.07.018" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.fct.2018.07.018</a></pub-id>
  8. Naveed M, Hejazi V, Abbas M, Kamboh AA, Khan GJ, Shumzaid M, Ahmad F, Babazadeh D, Fang-Fang X, Modarresi-Ghazani F, Wen-Hua L, Xiao-Hui Z. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed Pharmacother 2018;97:67–74. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.biopha.2017.10.064" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.biopha.2017.10.064</a></pub-id>
  9. Santana-Gálvez J, Cisneros-Zevallos L, Jacobo-Velázquez DA. Chlorogenic acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules 2017;22(3):358. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/molecules22030358" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/molecules22030358</a></pub-id>
  10. Hada Y, Uchida HA, Otaka N, Onishi Y, Okamoto S, Nishiwaki M, Takemoto R, Takeuchi H, Wada J. The protective effect of chlorogenic acid on vascular senescence via the Nrf2/HO-1 pathway. Int J Mol Sci 2020;21(12):4527. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/ijms21124527" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/ijms21124527</a></pub-id>
  11. Liu D, Wang H, Zhang Y, Zhang Z. Protective effects of chlorogenic acid on cerebral ischemia/reperfusion injury rats by regulating oxidative stress-related Nrf2 pathway. Drug Des Devel Ther 2020;14:51–60. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.2147/DDDT.S228751" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2147/DDDT.S228751</a></pub-id>
  12. Wang D, Hou J, Wan J, Yang Y, Liu S, Li X, Li W, Dai X, Zhou P, Liu W, Wang P. Dietary chlorogenic acid ameliorates oxidative stress and improves endothelial function in diabetic mice via Nrf2 activation. J Int Med Res 2021;49(1):300060520985363. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1177/0300060520985363" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1177/0300060520985363</a></pub-id>
  13. Mapuskar KA, Pulliam CF, Zepeda-Orozco D, Griffin BR, Furqan M, Spitz DR, Allen BG. Redox regulation of Nrf2 in cisplatin-induced kidney injury. Antioxidants (Basel) 2023;12(9):1728. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/antiox12091728" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/antiox12091728</a></pub-id>
  14. Ali FEM, Hassanein EHM, Abd El-Ghafar OAM, Rashwan EK, Saleh FM, Atwa AM. Exploring the cardioprotective effects of canagliflozin against cisplatin-induced cardiotoxicity: Role of iNOS/NF-κB, Nrf2, and Bax/cytochrome C/Bcl-2 signals. J Biochem Mol Toxicol 2023;37(4):e23309. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1002/jbt.23309" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/jbt.23309</a></pub-id>
  15. Xu Q, Zhang Z, Tang M, Xing C, Chen H, Zheng K, Zhao Z, Zhou S, Zhao AZ, Li F, Mu Y. Endogenous production of ω-3 polyunsaturated fatty acids mitigates cisplatin-induced myelosuppression by regulating NRF2-MDM2-p53 signaling pathway. Free Radic Biol Med 2023;201:14–25. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.freeradbiomed.2023.03.005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.freeradbiomed.2023.03.005</a></pub-id>
  16. Yan Q, Li M, Dong L, Luo J, Zhong X, Shi F, Ye G, Zhao L, Fu H, Shu G, Zhao X, Zhang W, Yin H, Li Y, Tang H. Preparation, characterization and protective effect of chitosan-tripolyphosphate encapsulated dihydromyricetin nanoparticles on acute kidney injury caused by cisplatin. Int J Biol Macromol 2023;245:125569. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.ijbiomac.2023.125569" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ijbiomac.2023.125569</a></pub-id>
  17. Owumi SE, Anaikor RA, Arunsi UO, Adaramoye OA, Oyelere AK. Chlorogenic acid co-administration abates tamoxifen-mediated reproductive toxicities in male rats: An experimental approach. J Food Biochem 2021;45(2):e13615. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1111/jfbc.13615" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/jfbc.13615</a></pub-id>
  18. Ali N, Rashid S, Nafees S, Hasan SK, Shahid A, Majed F, Sultana S. Protective effect of chlorogenic acid against methotrexate induced oxidative stress, inflammation and apoptosis in rat liver: An experimental approach. Chem Biol Interact 2017;272:80–91. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.cbi.2017.05.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.cbi.2017.05.002</a></pub-id>
  19. Komeili-Movahhed T, Heidari F, Moslehi A. Chlorogenic acid alleviated testicular inflammation and apoptosis in tunicamycin induced endoplasmic reticulum stress. Physiol Int 2023;110:19–33. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1556/2060.2023.00132" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1556/2060.2023.00132</a></pub-id>
  20. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl U, Emerson M, Garner P, Holgate ST, Howells DW, Karp NA, Lazic SE, Lidster K, MacCallum CJ, Macleod M, Pearl EJ, Petersen OH, Rawle F, Reynolds P, Rooney K, Sena ES, Silberberg SD, Steckler T, Würbel H. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol 2020;18(7):e3000410. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1371/journal.pbio.3000410" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1371/journal.pbio.3000410</a></pub-id>
  21. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes [displayed 10 June 2025]. Available at <a href="https://eur-lex.europa.eu/eli/dir/2010/63/oj/eng" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://eur-lex.europa.eu/eli/dir/2010/63/oj/eng</a>
  22. Mentese A, Demir S, Mungan SA, Alemdar NT, Demir EA, Aliyazicioglu Y. Gentisic acid ameliorates cisplatin-induced reprotoxicity through suppressing endoplasmic reticulum stress and upregulating Nrf2 pathway. Tissue Cell 2023;85:102256. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.tice.2023.102256" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.tice.2023.102256</a></pub-id>
  23. Demir S, Mentese A, Usta ZT, Alemdar NT, Demir EA, Aliyazicioglu Y. Alpha-pinene neutralizes cisplatin-induced reproductive toxicity in male rats through activation of Nrf2 pathway. Int Urol Nephrol 2024;56:527–37. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s11255-023-03817-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s11255-023-03817-5</a></pub-id>
  24. Du WY, Chang C, Zhang Y, Liu YY, Sun K, Wang CS, Wang MX, Liu Y, Wang F, Fan JY, Li PT, Han JY. High-dose chlorogenic acid induces inflammation reactions and oxidative stress injury in rats without implication of mast cell degranulation. J Ethnopharmacol 2013;147:74–83. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.jep.2013.01.042" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jep.2013.01.042</a></pub-id>
  25. Tom EN, Girard-Thernier C, Demougeot C. The Janus face of chlorogenic acid on vascular reactivity: A study on rat isolated vessels. Phytomedicine 2016;23:1037–42. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.phymed.2016.06.012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.phymed.2016.06.012</a></pub-id>
  26. Domitrović R, Cvijanović O, Šušnić V, Katalinić N. Renoprotective mechanisms of chlorogenic acid in cisplatin-induced kidney injury. Toxicology 2014;324:98–107. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.tox.2014.07.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.tox.2014.07.004</a></pub-id>
  27. Ayazoglu Demir E, Mentese A, Livaoglu A, Alemdar NT, Aliyazicioglu Y, Demir S. Chlorogenic acid attenuates cisplatin-induced ovarian injury in rats. Drug Chem Toxicol 2024;47:213–7. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1080/01480545.2023.2172181" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/01480545.2023.2172181</a></pub-id>
  28. Mentese A, Demir S, Alemdar NT, Demir EA, Aliyazıcıoğlu Y. The effect of chlorogenic acid on methotrexate-induced oxidative stress and inflammation in lung tissue of rats. Farabi Med J 2024;3:71–8. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.59518/farabimedj.1504348" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.59518/farabimedj.1504348</a></pub-id>
  29. Somani SM, Husain K, Whitworth C, Trammell GL, Malafa M, Rybak LP. Dose-dependent protection by lipoic acid against cisplatin-induced nephrotoxicity in rats: antioxidant defense system. Pharmacol Toxicol 2000;86:234–41. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1034/j.1600-0773.2000.d01-41.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1034/j.1600-0773.2000.d01-41.x</a></pub-id>
  30. Koc A, Duru M, Ciralik H, Akcan R, Sogut S. Protective agent, erdosteine, against cisplatin-induced hepatic oxidant injury in rats. Mol Cell Biochem 2005;278:79–84. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s11010-005-6630-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s11010-005-6630-z</a></pub-id>
  31. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. Measurement of protein using bicinchoninic acid. Anal Biochem 1985;150:76–85. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/0003-2697(85)90442-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/0003-2697(85)90442-7</a></pub-id>
  32. Mihara M, Uchiyama M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 1978;86:271–8. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/0003-2697(78)90342-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/0003-2697(78)90342-1</a></pub-id>
  33. Feldman AT, Wolfe D. Tissue processing and hematoxylin and eosin staining. Methods Mol Biol 2014;1180:31–43. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/978-1-4939-1050-2_3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-1-4939-1050-2_3</a></pub-id>
  34. Johnsen SG. Testicular biopsy score count – a method for registration of spermatogenesis in human testes: normal values and results in 335 hypogonadal males. Hormones 1970;1:2–25. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1159/000178170" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1159/000178170</a></pub-id>
  35. Lewis-Jones DI, Kerrigan DD. A modified Johnsen's count for evaluation of spermatogenesis in the rat. IRCS Med Sci 1985;13:510–1.
  36. Abdel-Wahab BA, Walbi IA, Albarqi HA, Ali FEM, Hassanein EHM. Roflumilast protects from cisplatin-induced testicular toxicity in male rats and enhances its cytotoxicity in prostate cancer cell line: Role of NF-κB-p65, cAMP/PKA and Nrf2/HO-1, NQO1 signaling. Food Chem Toxicol 2021;151:112133. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.fct.2021.112133" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.fct.2021.112133</a></pub-id>
  37. Ismail HY, Shaker NA, Hussein S, Tohamy A, Fathi M, Rizk H, Wally YR. Cisplatin-induced azoospermia and testicular damage ameliorated by adipose-derived mesenchymal stem cells. Biol Res 2023;56(1):2. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1186/s40659-022-00410-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/s40659-022-00410-5</a></pub-id>
  38. Chirino YI, Pedraza-Chaverri J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp Toxicol Pathol 2009;61:223–42. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.etp.2008.09.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.etp.2008.09.003</a></pub-id>
  39. Akhigbe RE, Adelowo OE, Ajani EO, Oyesetan RI, Oladapo DD, Akhigbe TM. Testicular toxicity in cisplatin-treated Wistar rats is mitigated by Daflon and associated with modulation of Nrf2/HO-1 and TLR4/NF-kB signaling. J Trace Elem Med Biol 2024;85:127489. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.jtemb.2024.127489" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jtemb.2024.127489</a></pub-id>
  40. Manohar S, Leung N. Cisplatin nephrotoxicity: a review of the literature. J Nephrol 2018;31:15–25. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s40620-017-0392-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s40620-017-0392-z</a></pub-id>
  41. Zavala-Valencia AC, Velasco-Hidalgo L, Martínez-Avalos A, Castillejos-López M, Torres-Espíndola LM. Effect of N-acetylcysteine on cisplatin toxicity: A review of the literature. Biologics 2024;18:7–19. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.2147/BTT.S438150" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2147/BTT.S438150</a></pub-id>
  42. Xu Y, Wang C, Li Z. A new strategy of promoting cisplatin chemotherapeutic efficiency by targeting endoplasmic reticulum stress. Mol Clin Oncol 2014;2:3–7. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3892/mco.2013.202" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3892/mco.2013.202</a></pub-id>
  43. Gorman AM, Healy SJ, Jäger R, Samali A. Stress management at the ER: regulators of ER stress-induced apoptosis. Pharmacol Ther 2012;134:306–16. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.pharmthera.2012.02.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.pharmthera.2012.02.003</a></pub-id>
  44. Chen X, Shi C, He M, Xiong S, Xia X. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets. Signal Transduct Target Ther 2023;8:352. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1038/s41392-023-01570-w" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/s41392-023-01570-w</a></pub-id>
  45. Foufelle F, Fromenty B. Role of endoplasmic reticulum stress in druginduced toxicity. Pharmacol Res Perspect 2016;4(1):e00211. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1002/prp2.211" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/prp2.211</a></pub-id>
  46. Wang L, Pan X, Jiang L, Chu Y, Gao S, Jiang X, Zhang Y, Chen Y, Luo S, Peng C. The biological activity mechanism of chlorogenic acid and its applications in food industry: A review. Front Nutr 2022;9:943911. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3389/fnut.2022.943911" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fnut.2022.943911</a></pub-id>
  47. Shi A, Shi H, Wang Y, Liu X, Cheng Y, Li H, Zhao H, Wang S, Dong L. Activation of Nrf2 pathway and inhibition of NLRP3 inflammasome activation contribute to the protective effect of chlorogenic acid on acute liver injury. Int Immunopharmacol 2018;54:125–30. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.intimp.2017.11.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.intimp.2017.11.007</a></pub-id>
  48. Wei M, Zheng Z, Shi L, Jin Y, Ji L. Natural polyphenol chlorogenic acid protects against acetaminophen-induced hepatotoxicity by activating ERK/Nrf2 antioxidative pathway. Toxicol Sci 2018;162:99–112. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1093/toxsci/kfx230" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/toxsci/kfx230</a></pub-id>
  49. Gao W, Guo L, Yang Y, Wang Y, Xia S, Gong H, Zhang BK, Yan M. Dissecting the crosstalk between Nrf2 and NF-κB response pathways in drug-induced toxicity. Front Cell Dev Biol 2022;9:809952. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3389/fcell.2021.809952" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fcell.2021.809952</a></pub-id>
  50. Kazaz IO, Demir S, Kerimoglu G, Colak F, Turkmen Alemdar N, Yilmaz Dogan S, Bostan S, Mentese A. Chlorogenic acid ameliorates torsion/detorsion-induced testicular injury via decreasing endoplasmic reticulum stress. J Pediatr Urol 2022;18(3):289.e1–7. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.jpurol.2022.02.013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jpurol.2022.02.013</a></pub-id>
  51. Song L, Wu T, Zhang L, Wan J, Ruan Z. Chlorogenic acid improves the intestinal barrier by relieving endoplasmic reticulum stress and inhibiting ROCK/MLCK signaling pathways. Food Funct 2022;13:4562–75. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1039/D1FO02662C" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1039/D1FO02662C</a></pub-id>
  52. Shah MA, Kang JB, Park DJ, Kim MO, Koh PO. Chlorogenic acid alleviates cerebral ischemia-induced neuroinflammation via attenuating nuclear factor kappa B activation. Neurosci Lett 2022;773:136495. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.neulet.2022" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.neulet.2022</a></pub-id>
  53. Li K, Feng Z, Wang L, Ma X, Wang L, Liu K, Geng X, Peng C. Chlorogenic acid alleviates hepatic ischemia-reperfusion injury by inhibiting oxidative stress, inflammation, and mitochondria-mediated apoptosis <em>in vivo</em> and <em>in vitro</em>. Inflammation 2023;46:1061–76. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s10753-023-01792-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10753-023-01792-8</a></pub-id>
  54. Ontawong A, Duangjai A, Vaddhanaphuti CS, Amornlerdpison D, Pengnet S, Kamkaew N. Chlorogenic acid rich in coffee pulp extract suppresses inflammatory status by inhibiting the p38, MAPK, and NF-κB pathways. Heliyon 2023;9(3):e13917. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.heliyon.2023.e13917" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.heliyon.2023.e13917</a></pub-id>
  55. El-Khadragy MF, Al-Megrin WA, Alomar S, Alkhuriji AF, Metwally DM, Mahgoub S, Amin HK, Habotta OA, Abdel Moneim AE, Albeltagy RS. Chlorogenic acid abates male reproductive dysfunction in arsenic-exposed mice via attenuation of testicular oxidoinflammatory stress and apoptotic responses. Chem Biol Interact 2021;333:109333. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.cbi.2020.109333" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.cbi.2020.109333</a></pub-id>
DOI: https://doi.org/10.2478/aiht-2025-76-3990 | Journal eISSN: 1848-6312 | Journal ISSN: 0004-1254
Language: English, Croatian, Slovenian
Page range: 130 - 137
Submitted on: Apr 1, 2025
Accepted on: Jun 1, 2025
Published on: Jun 30, 2025
Published by: Institute for Medical Research and Occupational Health
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2025 Elif Ayazoğlu Demir, Selim Demir, Sevdegül Aydın Mungan, Nihal Türkmen Alemdar, Ahmet Menteşe, Yüksel Aliyazıcıoğlu, published by Institute for Medical Research and Occupational Health
This work is licensed under the Creative Commons Attribution 4.0 License.