Have a personal or library account? Click to login
Trace element and radiological characterisation of ash and soil at a legacy site in the former Raša coal-mining area Cover

Trace element and radiological characterisation of ash and soil at a legacy site in the former Raša coal-mining area

Open Access
|Dec 2024

References

  1. Finkelman RB, Wolfe A, Hendryx MS. The future environmental and health impacts of coal. Energy Geoscience 2021;2:99–112. doi: 10.1016/j.engeos.2020.11.001
  2. Boahen F, Száková J, Kališová A, Najmanová J, Tlustoš P. The assessment of the soil-plant-animal transport of the risk elements at the locations affected by brown coal mining. Environ Sci Pollut Res 2023;30:337–51. doi: 10.1007/s11356-022-22254-y
  3. Boaretto FBM, da Silva J, Scotti A, Torres JS, Garcia ALH, Rodrigues GZP, Gehlen G, Rodrigues VB, Charão MF, Soares GM, Dias JF, Picada JN. Comparative toxicity of coal and coal ash: Assessing biological impacts and potential mechanisms through in vitro and in vivo testing. J Trace Elem Med Biol 2024;81:127343. doi: 10.1016/j.jtemb.2023.127343
  4. Junior SFS, da Silva EO, Mannarino CF, Correia FV, Saggioro EM. A comprehensive overview on solid waste leachate effects on terrestrial organisms. Sci Total Environ 2024;915:170083. doi: 10.1016/j.scitotenv.2024.170083
  5. Petrović M, Fiket Ž. Environmental damage caused by coal combustion residue disposal: A critical review of risk assessment methodologies. Chemosphere 2022;299:134410. doi: 10.1016/j.chemosphere.2022.134410
  6. Cheng W, Lei S, Bian Z, Zhao Y, Li Y, Gan Y. Geographic distribution of heavy metals and identification of their sources in soils near large, open-pit coal mines using positive matrix factorization. J Hazard Mater 2020;387:121666. doi: 10.1016/j.jhazmat.2019.121666
  7. Cao Q, Yang L, Ren W, Yan R, Wang Y, Liang C. Environmental geochemical maps of harmful trace elements in Chinese coalfields. Sci Total Environ 2021;799:149475. doi: 10.1016/j.scitotenv.2021.149475
  8. Petrović M, Ivanić M, Vdović N, Dolenec M, Čermelj B, Šket P, Medunić G, Fiket Ž. Physicochemical and mineral characteristics of soil materials developed naturally on two ~50 years old coal combustion residue disposal sites in Croatia. Catena 2023;231:107338. doi: 10.1016/j.catena.2023.107338
  9. UNSCEAR 2008 Report. Sources and Effects of Ionizing Radiation. Annex B – Exposures from natural radiation sources. New York: United Nations; 2010.
  10. Dragun Z, Stipaničev D, Fiket Ž, Lučić M, Udiković Kolić N, Puljko A, Repec S, Šoštarić Vulić Z, Ivanković D, Barac F, Kiralj Z, Kralj T, Valić D. Yesterday’s contamination – A problem of today? The case study of discontinued historical contamination of the Mrežnica River (Croatia). Sci Total Environ 2022;848:157775. doi: 10.1016/j.scitotenv.2022.157775
  11. Skoko B, Radić Brkanac S, Kuharić Ž, Jukić M, Štrok M, Rovan L, Zgorelec Ž, Perčin A, Prlić I. Does exposure to weathered coal ash with an enhanced content of uranium-series radionuclides affect flora? Changes in the physiological indicators of five referent plant species. J Hazard Mater 2023;441:129880. doi: 10.1016/j.jhazmat.2022.129880
  12. Zerizghi T, Guo Q, Wei R, Wang Z, Du C, Deng Y. Rare earth elements in soil around coal mining and utilization: Contamination, characteristics, and effect of soil physicochemical properties. Environ Pollut 2023;331:121788. doi: 10.1016/j.envpol.2023.121788
  13. Papastefanou C. Escaping radioactivity from coal-fired power plants (CPPs) due to coal burning and the associated hazards: A review. J Environ Radioact 2010;101:191–200. doi: 10.1016/j.jenvrad.2009.11.006
  14. Dinis ML, Fiúza A, Góis J, Carvalho JMS, Castro ACM. Modeling radionuclides dispersion and deposition downwind of a Coal-fired power plant. Proced Earth Plan Sc 2014;8:59–63. doi: 10.1016/j.proeps.2014.05.013
  15. Zhang W, Mo Q, Huang Z, Sabar MA, Medunić G, Ivošević T, He H, Urynowicz M, Liu FJ, Guo H, Haider R, Ali MI, Jamal A. Contaminants from a former Croatian coal sludge dictate the structure of microbiota in the estuarine (Raša Bay) sediment and soil. Front Microbiol 2023;14:1126612. doi: 10.3389/fmicb.2023.1126612
  16. Narayan A, Diogo BS, Mansilha C, Espinha Marques J, Flores D, Antunes SC. Assessment of ecotoxicological effects of Fojo coal mine waste elutriate in aquatic species (Douro Coalfield, North Portugal). Front Toxicol 2024;6:1334169. doi: 10.3389/ftox.2024.1334169
  17. Tyszka R, Pędziwiatr A, Pietranik A, Kierczak J, Ettler V, Mihaljevič M, Zieliński G. A long-term perspective on coal combustion solid waste interacting with urban soil. Appl Geochem 2024;166:105975. doi: 10.1016/j.apgeochem.2024.105975
  18. Marović G, Senčar J. Assessment of radioecological situation of a site contaminated by technologically enhanced natural radioactivity in Croatia. J Radioanal Nucl Chem 1999;241:569–74. doi: 10.1007/BF02347214
  19. Marović G, Senčar J, Bronzović M, Franić Z, Kovač J. Otpad vezan uz proizvodnju električne energije i proizvodnju mineralnih gnojiva [Radioactive waste due to electric power and mineral fertiliser production, in Croatian]. Arh Hig Rada Toksikol 2006;57:333–8.
  20. Habib MA, Khan R, Phoungthong K. Evaluation of environmental radioactivity in soils around a coal burning power plant and a coal mining area in Barapukuria, Bangladesh: Radiological risks assessment. Chem Geol 2022;600:120865. doi: 10.1016/j.chemgeo.2022.120865
  21. Gajbhiye T, Malik TG, Kang CH, Kim KH, Pandey SK. Assessment of sources and pollution level of airborne toxic metals through foliar dust in an urban roadside environment. Asian J Atmos Environ 2022;16:2021121. doi: 10.5572/ajae.2021.121
  22. Petrović M, Fiket Ž, Medunić G, Chakravarty S. Mobility of metals and metalloids from SHOS coal ash and slag deposit : mineralogical and geochemical constraints. Environ Sci Pollut Res 2022;29:46916– 28. doi: 10.1007/s11356-022-19074-5
  23. Abdulmannan R, Skousen J, Tack FMG. An overview of soil pollution and remediation strategies in coal mining regions. Minerals 2023;13(8):1064. doi: 10.3390/min13081064
  24. Buterin T, Doričić R, Broznić D, Ćorić T, Muzar A. The Labin Region, an ecologically vulnerable geographical area in Croatia: Mortality characteristics in an area polluted by industrial over a 40-year period. Geospatial Health 2022;17:1082. doi: 10.4081/gh.2022.1082
  25. Marović G, Senčar J, Kovač J, Prlić I. Improvement of the radiological environmental situation due to remedial actions at a coal-fired power plant. J Radioanal Nucl Chem 2004;261:451–5. doi: 10.1023/B:JRNC.0000034884.26071.a9
  26. Medunić G, Singh PK, Singh AL, Rai A, Rai S, Jaiswal MK, Obrenović Z, Petković Z, Janeš M. Use of bacteria and synthetic zeolites in remediation of soil and water polluted with superhigh-organic-sulfur Raša coal (Raša Bay, North Adriatic, Croatia). Water 2019;11(7):1419. doi: 10.3390/w11071419
  27. Medunić G, Bucković D, Prevendar Crnić A, Gaurina Srček V, Radošević K, Bajramović M, Zgorelec Ž. Sulfur, metal(loid)s, radioactivity, and cytotoxicity in abandoned karstic raša coal-mine discharges (the north Adriatic Sea). Rud-geol-naft zb 2020;35(3):50. doi: 10.17794/rgn.2020.3.1
  28. Medunić G, Bilandžić N, Sedak M, Fiket Ž, Prevendar Crnić A, Geng V. Elevated selenium levels in vegetables, fruits, and wild plants affected by the Raša coal mine water chemistry. Rud-geol-naft zb 2021;36(1):52. doi: 10.17794/rgn.2021.1.1
  29. Prevendar Crnić A, Damijanić D, Bilandžić N, Bilandžić N, Sedak M, Medunić G. Enhanced levels of hazardous trace elements (Cd, Cu, Pb, Se, Zn) in bird tissues in the context of environmental pollution by Raša coal. Rud-geol-naft zb 2022;37(1):57. doi: 10.17794/rgn.2022.1.3
  30. Durn G, Ottner F, Slovenec D. Mineralogical and geochemical indicators of the polygenetic nature of terra rossa in Istria, Croatia. Geoderma 1999;91:125–50. doi: 10.1016/S0016-7061(98)00130-X
  31. Malvić T, Velić J, Cvetković M, Vekić M. Šapina M. Definition of new Pliocene, Pleistocene and Holocene Lithostratigraphic Units in The Croatian part of the Adriatic Sea (Shallow Offshore). Geoadrija 2015;20:85–108. doi: 10.15291/geoadria.2
  32. Velić I, Tišljar J, Vlahović I, Matičec D, Bergant S. Evolution of Istrian part of the Adriatic Carbonate Platform from the Middle Jurassic to the Santonian and formation of the flysch basin during the Eocene: Main events and regional comparison. In: Vlahović I, Tišljar J, editors. Field trip guidebook: evolution of depositional environments from the Palaeozoic to the quaternary in the Karst Dinarides and the Pannonian Basin. Zagreb: Croatian Geological Survey; 2003. p. 3–18.
  33. Medunić G, Ahel M, Božičević Mihalić I, Gaurina Srček V, Kopjar N, Fiket Ž, Bituh T, Mikac I. Toxic airborne S, PAH, and trace element legacy of the superhigh-organic-sulphur Raša coal combustion: Cytotoxicity and genotoxicity assessment of soil and ash. Sci Total Environ 2016;566–567:306–19. doi: 10.1016/j.scitotenv.2016.05.096
  34. Kuhta M, Brkić Ž. Seawater intrusion at abandoned coal mines in the Labin Region, Croatia. In: Goodwill J, editor. Proceedings of the Third Annual International Conference on Mine Water Solutions. Vancouver: University of British Columbia; 2018. p. 747–58.
  35. International Atomic Energy Agency (IAEA). Worldwide Open Proficiency Test for X ray Fluorescence Laboratories PTXRFIAEA08: Determination of Minor and Trace Elements in Natural Soil. IAEA Analytical Quality in Nuclear Applications Series No. 38. Vienna: IAEA; 2014.
  36. Mayer M. SIMNRA User’s Guide. Report IPP 9/113. Garching: Max-Planck-Institut für Plasmaphysik; 1997.
  37. Campbell JL, Boyd NI, Grassi N, Bonnick P, Maxwell JA. The Guelph PIXE software package IV. Nucl Instrum Meth B 2010;268:3356–63. doi: 10.1016/j.nimb.2010.07.012
  38. International Atomic Energy Agency (IAEA). Measurement of Radionuclides in Food and the Environment. A Guidebook. Technical Reports Series No. 295. Vienna: IAEA; 1989.
  39. International Atomic Energy Agency (IAEA). IAEA-TECDOC-1415. Soil Sampling for Environmental Contaminants. Vienna: IAEA; 2004.
  40. Franić Z, Bituh T, Godec R, Čačković M, Meštrović T, Šiško J. Experiences with the accreditation of the Institute for Medical Research and Occupational Health, Zagreb, Croatia. Arh Hig Rada Toksikol 2020;71:312–9. doi: 10.2478/aiht-2020-71-3449
  41. Vidmar T. EFFTRAN – A Monte Carlo efficiency transfer code for gamma-ray spectrometry. Nucl Instrum Meth A 2005;550:603–8. doi: 10.1016/j.nima.2005.05.055
  42. Šoštarić M, Babić D, Petrinec B, Zgorelec Ž. Determination of gammaray self-attenuation correction in environmental samples by combining transmission measurements and Monte Carlo simulations. Appl Radiat Isot 2016;113:110–6. doi: 10.1016/j.apradiso.2016.04.012
  43. Šoštarić M, Petrinec B, Avdić M, Petroci Lj, Kovačić M, Zgorelec Ž, Skoko B, Bituh T, Senčar J, Branica G, Franić Z, Franulović I, Rašeta D, Bešlić I, Babić D. Radioactivity of soil in Croatia I: Naturally occurring decay chains. Arh Hig Rada Toksikol 2021;72:6–14. doi: 10.2478/aiht-2021-72-3439
  44. Šoštarić M, Petrinec B, Avdić M, Petroci Lj, Kovačić M, Zgorelec Ž, Skoko B, Bituh T, Senčar J, Branica G, Franić Z, Franulović I, Rašeta D, Bešlić I, Babić D. Radioactivity of soil in Croatia II: 137Cs, 40K, and absorbed dose rate. Arh Hig Rada Toksikol 2021;72:15–22. doi: 10.2478/aiht-2021-72-3440
  45. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Ionizing Radiation: Sources and Biological Effects. New York: UNSCEAR; 1982.
  46. Farai IP, Ademola JA. Radium equivalent activity concentrations in concrete building blocks in eight cities in Southwestern Nigeria. J Environ Radioact 2005;79:119–25. doi: 10.1016/j.jenvrad.2004.05.016
  47. Tufail M. Radium equivalent activity in the light of UNSCEAR report. Environ Monit Assess 2012;84:5663–7. doi: 10.1007/s10661-011-2370-6
  48. Petrović M. Potencijal ispiranja selena i metala iz nepropisno odloženog otpada šljake, pepela i Raškog ugljena u naselju Štrmac u Istri [Leaching potential of selenium and metals from an ununregulated waste of slag, ash and Raša coal (Štrmac, Istria), in Croatian]. [Master thesis]. Zagreb: University of Zagreb, Faculty of Science; 2019.
  49. Petrović M. Selenium: widespread yet scarce, essential yet toxic. Chem Texts 2021;7:11. doi: 10.1007/s40828-021-00137-y
  50. Halamić J, Miko S. Geochemical Atlas of the Republic of Croatia. Zagreb: Croatian Geological Survey; 2009.
  51. Pravilnik o zaštiti poljoprivrednog zemljišta od onečišćenja [Ordinance on the protection of agricultural land from pollution, in Croatian]. Narodne novine 71/2019.
  52. Reimann C, de Cariat P. Chemical Elements in the Environment: Facts Heets for the Geochemist and Environmental Scientist. Berlin, Heidelberg: Springer; 1998.
  53. Koljonen T. Geochemical atlas of Finland, Part 2: Till. Geological Survey of Finland, Espoo 1992.
  54. Kabata-Pendias A. Trace Elements in Soils and Plants. 4thed. Boca Raton (FL): Taylor & Francis Group; 2010.
  55. Cai C, Xiong B, Zhang Y, Li X, Nunes LM. Critical comparison of soil pollution indices for assessing contamination with toxic metals. Water Air Soil Pollut 2015;226:352. doi: 10.1007/s11270-015-2620-2
  56. Kowalska BJ, Mazurek R, Gasiorek M, Zaleski T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination – A review. Environ Geochem Health 2018;40:2395– 420. doi: 10.1007/s10653-018-0106-z
  57. Pravilnik o praćenju stanja radioaktivnosti u okolišu [Ordinance on environmental monitoring of radioactivity, in Croatian]. Narodne novine 40/2018; 6/2022.
  58. Getaldić A, Surić Mihić M, Veinović Ž, Skoko B, Petrinec B. Remediation of coal ash and slag disposal site: Comparison of radiological risk assessment. Rud Geol Naft Zb 2023;3:99–104. doi: 10.17794/rgn.2023.3.8
  59. Das D, Rout PK. A review of coal fly ash utilization to save the environment. Water Air Soil Pollut 2023;234:128. doi: 10.1007/s11270-023-06143-9
  60. Labrincha J, Puertas F, Schroeyers W, Kovler K, Pontikes Y, Nuccetelli C, Krivenko P, Kovalchuk O, Petropavlovsky O, Komljenovic M, Fidanchevski E, Wiegers R, Volceanov E, Gunay E, Sanjuán MA, Ducman V, Angjusheva B, Bajare D, Kovacs T, Bator G, Schreurs S, Aguiar J, Provis JL. NORM by-products to building materials. In: Schroeyers W, editor. Naturally occurring radioactive materials in construction. Duxfort: Woodhead publishing – Elsevier; 2017. p. 183–252.
  61. Shi Y, Jiang F, Wang R, Yang S, Zhu X, Shen Y. A mini review on the separation of Al, Fe and Ti elements from coal fly ash leachate. Int J Coal Sci Technol 2024;11:24. doi: 10.1007/s40789-024-00683-z
DOI: https://doi.org/10.2478/aiht-2024-75-3897 | Journal eISSN: 1848-6312 | Journal ISSN: 0004-1254
Language: English, Croatian, Slovenian
Page range: 245 - 258
Submitted on: Sep 1, 2024
|
Accepted on: Nov 1, 2024
|
Published on: Dec 29, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Tomislav Bituh, Josip Peco, Iva Božičević Mihalić, Sabrina Gouasmia, Marija Grlić, Branko Petrinec, published by Institute for Medical Research and Occupational Health
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.