References
- Silva BN, Cadavez V, Caleja C, Pereira E, Calhelha RC, Añibarro-Ortega M, Finimundy T, Kostić M, Soković M, Teixeira JA, Barros L, Gonzales-Barron U. Phytochemical composition and bioactive potential of Melissa officinalis L., Salvia officinalis L. and Mentha spicata L. extracts. Foods 2023;12:947. doi: 10.3390/foods12050947
- Ută G, Manolescu Stefania D, Avram S. Therapeutic properties of several chemical compounds of Salvia officinalis L. in Alzheimer's disease. Mini-Rev Med Chem 2021;21:1421–30. doi: 10.2174/1389557521999201230200209
- Jakovljević M, Jokić S, Molnar M, Jašić M, Babić J, Jukić H, Banjari I. Bioactive profile of various Salvia officinalis L. preparations. Plants 2019;8:55. doi: 10.3390/plants8030055
- Ghorbani A, Esmaeilizadeh M. Pharmacological properties of Salvia officinalis and its components. J Tradit Complement Med 2017;7:433–40. doi: 10.1016/j.jtcme.2016.12.014
- Kolac UK, Ustuner MC, Tekin N, Ustuner D, Colak E, Entok E. The anti-inflammatory and antioxidant effects of Salvia officinalis on lipopolysaccharide-induced inflammation in rats. J Med Food 2017;20:1193–200. doi: 10.1089/jmf.2017.0035
- Faridzadeh A, Salimi Y, Ghasemirad H, Kargar M, Rashtchian A, Mahmoudvand G, Deravi N. Neuroprotective potential of aromatic herbs: rosemary, sage, and lavender. Front Neurosci 2022;16:909833. doi: 10.3389/fnins.2022.909833
- Diab KA, Fahmy MA, Hassan ZM, Hassan EM, Salama AB, Omara EA. Genotoxicity of carbon tetrachloride and the protective role of essential oil of Salvia officinalis L. in mice using chromosomal aberration, micronuclei formation, and comet assay. Environ Sci Pollut Res 2018;25:1621–36. doi: 10.1007/s11356-017-0601-2
- Radulović NS, Genčić MS, Stojanović NM, Ranđelović PJ, Stojanović-Radić ZZ, Stojiljković NI. Toxic essential oils. Part V: Behaviour modulating and toxic properties of thujones and thujone-containing essential oils of Salvia officinalis L., Artemisia absinthium L., Thuja occidentalis and Tanacetum vulgare. Food Chem Toxicol 2017;105:355–69. doi: 10.1016/j.fct.2017.04.044
- Nikolić B, Mitić-Ćulafić D, Vuković-Gačić B, Knežević-Vukčević J. The antimutagenic effect of monoterpenes against UV-irradiation-, 4NQO- and t-BOOH-induced mutagenesis in coli. Arch Biol Sci 2011;63:117–28. doi: 10.2298/ABS1101117N
- Vuković-Gačić B, Nikčević S, Berić-Bjedov T, Knežević-Vukčević J, Simić D. Antimutagenic effect of essential oil of sage (Salvia officinalis L.) and its monoterpenes against UV-induced mutations in Escherichia coli and Saccharomyces cerevisiae. Food Chem Toxicol 2006;44:1730–8. doi: 10.1016/j.fct.2006.05.011
- Margetts G, Kleidonas S, Zaibi NS, Zaibi MS, Edwards KD. Evidence for anti-inflammatory effects and modulation of neurotransmitter metabolism by Salvia officinalis L. BMC Complement Med Ther 2022;22(1):131. doi: 10.1186/s12906-022-03605-1
- Wojtunik-Kulesza KA. Toxicity of selected monoterpenes and essential oils rich in these compounds. Molecules 2022;27(5):1716. doi: 10.3390/molecules27051716
- Agus HH. Terpene toxicity and oxidative stress. In: Patel VB, Preedy VR, editors. Toxicology. Cambridge: Academic Press; 2021. p. 33–42.
- Singleton VL, Orthofer R, Lamuela-Raventós RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 1999;299:152–78. doi: 10.1016/S0076-6879(99)99017-1
- Chang C-C, Yang M-H, Wen H-M, Chern J-C. Estimation of total flavonoid content in propolis by two complementary colometric methods. J Food Drug Anal 2020;10:178–82. doi: 10.38212/2224-6614.2748
- National Institute of Standards and Technology. NIST/EPA/NIH Mass Spectral Library (NIST 14) [displayed 8 May 2024]. Available at:
https://www.nist.gov/srd/nist-standard-reference-database-1a - Sharma OP, Bhat TK. DPPH antioxidant assay revisited. Food Chem 2009;113:1202–5. doi: 10.1016/j.foodchem.2008.08.008
- Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 1999;26:1231–7. doi: 10.1016/S0891-5849(98)00315-3
- Strober W. Trypan blue exclusion test of cell viability. Curr Protoc Immunol 2015;111:A3.B.1–3. doi: 10.1002/0471142735.ima03bs111
- Mannervik B. Measurement of glutathione reductase activity. Curr Protoc Toxicol 1999;Chapter 7:Unit 7.2. doi: 10.1002/0471140856.tx0702s00
- Alamdari DH, Paletas K, Pegiou T, Sarigianni M, Befani C, Koliakos G. A novel assay for the evaluation of the prooxidant-antioxidant balance, before and after antioxidant vitamin administration in type II diabetes patients. Clin Biochem 2007;40:248–54. doi: 10.1016/j.clinbiochem.2006.10.017
- Fenech M. The in vitro micronucleus technique. Mutat Res 2000;455:81–95. doi: 10.1016/S0027-5107(00)00065-8
- Fenech M, Chang WP, Kirsch-Volders M, Holland N, Bonassi S, Zeiger E. HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res 2003;534:65–75. doi: 10.1016/S1383-5718(02)00249-8
- Talaat AN, Ebada SS, Labib RM, Esmat AN, Youssef FS, Singab AN. Verification of the anti-inflammatory activity of the polyphenolic-rich fraction of Araucaria bidwillii Hook. using phytohaemagglutinin-stimulated human peripheral blood mononuclear cells and virtual screening. J Ethnopharmacol 2018;226:44–7. doi: 10.1016/j.jep.2018.07.026
- Askari VR, Rahimi VB, Zargarani R, Ghodsi R, Boskabady M, Boskabady MH. Anti-oxidant and anti-inflammatory effects of auraptene on phytohemagglutinin (PHA)-induced inflammation in human lymphocytes. Pharmacol Rep 2021;73:154–62. doi: 10.1007/s43440-020-00083-5.
- Ellman GL, Courtney KD, Andres Jr V, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9
- Lazarević-Pašti T, Čolović M, Savić J, Momić T, Vasć V. Oxidation of diazinon and malathion by myeloperoxidase. Pestic Biochem Physiol 2011;100:140–4. doi: 10.1016/j.pestbp.2011.03.001
- El-Rafie HM, El-Aziz SMA, Zahran MK. In vitro cytotoxicity against breast cancer using biogenically synthesized gold and iron oxide nanoparticles derived from the hydroethanolic extract of Salvia officinalis L. Chem Pap 2023;77:361–73. doi: 10.1007/s11696-022-02464-x
- Mocan A, Babotă M, Pop A, Fizesan I, Diuzheva A, Locatelli M, Carradori S, Campestre C, Menghini L, Sisea CR, Sokovic M, Zengin G, Păltinean R, Bădărău S, Vodnar DC, Crisan G. Chemical constituents and biologic activities of sage species: A comparison between Salvia officinalis L., S. glutinosa L. and S. transsylvanica (Schur ex Griseb. & Schenk) Schur. Antioxidants 2020;9(6):480. doi: 10.3390/antiox9060480
- Afonso AF, Pereira OR, Fernandes Â, Calhelha RC, Silva AMS, Ferreira ICF, Cardoso SM. Phytochemical composition and bioactive effects of Salvia africana, Salvia officinalis ‘Icterina’ and Salvia mexicana aqueous extracts. Molecules 2019;24(3):4327. doi: 10.3390/molecules24234327
- Duletić-Laušević S, Aradski AA, Živković J, Gligorijević N, Šavikin K, Radulović S, Ćoćić D, Marin PD. Evaluation of bioactivities and phenolic composition of extracts of Salvia officinalis L. (Lamiaceae) collected in Montenegro. Bot Serbica 2019;43:47–58. doi: 10.2298/BOTSERB1901047D
- Abdelkader M, Ahcene B, Rachid D, Hakim H. Phytochemical study and biological activity of sage (Salvia officinalis L.). Int J Bioeng Life Sci 2014;8:1253–7.
- Ben Farhat M, Jordán MJ, Chaouech-Hamada R, Landoulsi A, Sotomayor JA. Variations in essential oil, phenolic compounds, and antioxidant activity of Tunisian cultivated Salvia officinalis L. J Agric Food Chem 2009;57:10349–56. doi: 10.1021/jf901877x
- Abu-Darwish MS, Cabral C, Ferreira IV, Gonçalves MJ, Cavaleiro C, Cruz MT, Al-bdour TH, Salgueiro L. Essential oil from common sage (Salvia officinalis L.) from Jordan: assesment of safety in mammalian cells and its antifungal and anti-inflamatory potential. BioMed Res Int 2013;2013:538940. doi: 10.1155/2013/538940
- Radulescu V, Chiliment S, Oprea E. Capillary gas chromatography-mass spectrometry of volatile and semi-volatile compounds of Salvia officinalis. J Chromatogr A 2004;1027:121–6. doi: 10.1016/j.chroma.2003.11.046
- El Euch SK, Hassine DB, Cazaux S, Bouzouita N, Bouajila J. Salvia officinalis essential oil: Chemical analysis and evaluation of anti-enzymatic and antioxidant bioactivities. South Afr J Bot 2019;120:253–60. doi: 10.1016/j.sajb.2018.07.010
- Garcia CSC, Menti C, Lambert APF, Barcellos T, Moura S, Calloni C, Branco CS, Salvador M, Roesch-Ely M, Henriques JAP. Pharmacological perspectives from Brazilian Salvia officinalis (Lamiaceae): Antioxidant, and antitumor in mammalian cells. An Acad Bras Ciênc 2016;88:281–92. doi: 10.1590/0001-3765201520150344
- Walch SG, Kuballa T, Stühlinger W, Lachenmeier DW. Determination of the biologically active flavour substances thujone and camphor in foods and medicines containing sage (Salvia officinalis L.). Chem Cent J 2011;5:44. doi: 10.1186/1752-153X-5-44
- Khedher MRB, Hammami M, Arch JRS, Hislop DC, Eze D, Wargent ET, Kępczyńska MA. Preventive effects of Salvia officinalis leaf extract on insulin resistance and inflammation in a model of high fat diet-induced obesity in mice that responds to rosiglitazone. PeerJ 2018;6:e4166. doi: 10.7717/peerj.4166
- Vieira SF, Ferreira H, Neves NM. Antioxidant and anti-inflammatory activities of cytocompatible Salvia officinalis extracts: a comparison between traditional and Soxhlet extraction. Antioxidants 2020;9:1157. doi: 10.3390/antiox9111157
- Kozics K, Klusová V, Srančíková A, Mučaji P, Slameňová D, Hunáková, Ľ, Kusznierewicz B, Horváthová E. Effects of Salvia officinalis and Thymus vulgaris on oxidant-induced DNA damage and antioxidant status in HepG2 cells. Food Chem 2013;141:2198–206. doi: 10.1016/j.foodchem.2013.04.089
- Khedher MRB, Khedher SB, Chaieb I, Tounsi S, Hammami M. Chemical composition and biological activities of Salvia officinalis essential oil from Tunisia. EXCLI J 2017;16:160–73. doi: 10.17179/excli2016-832
- Zare Shahneh F, Valiyari S, Baradaran B, Abdolalizadeh J, Bandehagh A, Azadmehr A, Hajiaghaee R. Inhibitory and cytotoxic activities of Salvia officinalis L. extract on human lymphoma and leukemia cells by induction of apoptosis. Adv Pharm Bull 2013;3:51–5. doi: 10.5681/apb.2013.009
- Moghadam SB, Masoudi R, Monsefi M. Salvia officinalis induces apoptosis in mammary carcinoma cells through alteration of Bax to Bcl-2 ratio. Iran J Sci Technol Trans Sci 2018;42:297–303. doi: 10.1007/s40995-018-0496-x
- Jantová S, Hudec R, Sekretár S, Kučerák J, Melušová M. Salvia officinalis L. extract and its new food antioxidant formulations induce apoptosis through mitochondrial/caspase pathway in leukemia L1210 cells. Interdiscip Toxicol 2014;7:146–53. doi: 10.2478/intox-2014-0020
- Zhumaliyeva G, Zhussupova A, Zhusupova GE, Błońska-Sikora E, Cerreto A, Omirbekova N, Zhunusbayeva Z, Gemejiyeva N, Ramazanova M, Wrzosek M, Ross SA. Natural compounds of Salvia L. genus and molecular mechanism of their biological activity. Biomedicines 2023;11(12):3151. doi: 10.3390/biomedicines11123151
- Brindisi M, Bouzidi C, Frattaruolo L, Loizzo MR, Capello MS, Dugay A, Deguin B, Lauria G, Capello AR, Tundis R. New insights into the antioxidant and anti-inflammatory effects of Italian Salvia officinalis leaf and fower extracts in lipopolysaccharide and tumor-mediated inflammation models. Antioxidants 2021;10(2):311. doi: 10.3390/antiox10020311
- Imanshahidi M, Hosseinzadeh H. The pharmacological effects of Salvia species on the central nervous system. Phytother Res 2006;20:427–37. doi: 10.1002/ptr.1898
- Baricevic D, Sosa S, Della Loggia R, Tubaro A, Simonovska B, Krasna A, Zupancic A. Topical anti-inflammatory activity of Salvia officinalis L. leaves: the relevance of ursolic acid. J Ethnopharmacol 2001;75:125–32. doi: 10.1016/S0378-8741(00)00396-2
- Portmann K, Linder A, Oelgarth N, Eyer K. Single-cell deep phenotyping of cytokine release unmasks stimulation-specific biological signatures and distinct secretion dynamics. Cell Rep Methods 2023;4(3):100502. doi: 10.1016/j.crmeth.2023.100502
- Mervić M, Bival Štefan M, Kindl M, Blažeković M, Marijan M, Vladimir-Knežević S. Comparative antioxidant, anti-acetylcholinesterase and anti-α-glucosidase activities of Mediterranean Salvia species. Plants 2022;11(5):625. doi: 10.3390/plants11050625
- Ayoub IM, George MY, Menze ET, Mahmoud M, Botros M, Essam M, Ashmawy I, Shendi P, Hany A, Galal M, Ayman M, Labib RM. Insights into the neuroprotective effects of Salvia officinalis L. and Salvia microphylla Kunth in the memory impairment rat model. Food Funct 2022;13:2253–68. doi: 10.1039/D1FO02988F
- Sharma Y, Fagan J, Schaefer J. In vitro screening for acetylcholinesterase inhibition and antioxidant potential in different extracts of sage (Salvia officinalis L.) and rosemary (Rosmarinus officinalis L.). J Biol Act Prod Nat 2020;10:59–69. doi: 10.1080/22311866.2020.1729239
- Andrade JM de M, dos Santos Passos C, Kieling Rubio MA, Mendonça JN, Lopes NP, Henriques AT. Combining in vitro and in silico approaches to evaluate the multifunctional profile of rosmarinic acid from Blechnum brasiliense on targets related to neurodegeneration. Chem Biol Interact 2016;254:135–45. doi: 10.1016/j.cbi.2016.06.005
- Oboh G, Agunloye OM, Akinyemi AJ, Ademiluyi AO, Adefegha SA. Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer's disease and some pro-oxidant induced oxidative stress in rats' brain-in vitro. Neurochem Res 2013;38:413–9. doi: 10.1007/s11064-012-0935-6