References
- Duke SO. The history and current status of glyphosate. Pest Manag Sci 2018;74:1027–34. doi: 10.1002/ps.4652
- Steinrücken HC, Amrhein N. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-3-phosphate synthase. Biochem Biophys Res Commun 1980;94:1207–12. doi: 10.1016/0006-291x(80)90547-1
- Defarge N, de Vendômois JS, Séralini GE. Toxicity of formulants and heavy metals in glyphosate-based herbicides and other pesticides. Toxicol Rep 2017;5:156–63. doi: 10.1016/j.toxrep.2017.12.025
- Silva V, Montanarella L, Jones A, Fernández-Ugalde O, Mol HGJ, Ritsema CJ, Geissen V. Distribution of glyphosate and aminomethylphosphonic acid (AMPA) in agricultural topsoils of the European Union. Sci Total Environ 2018;621:1352–9. doi: 10.1016/j.scitotenv.2017.10.093
- Guyton KZ, Loomis D, Grosse Y, El Ghissassi F, Benbrahim-Tallaa L, Guha N, Scoccianti C, Mattock H, Straif K; International Agency for Research on Cancer Monograph Working Group, IARC, Lyon, France. Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. Lancet Oncol 2015;16:490–1. doi: 10.1016/S1470-2045(15)70134-8
- Lacroix R, Kurrasch DM. Glyphosate toxicity: in vivo, in vitro, and epidemiological evidence. Toxicol Sci 2023;192:131–40. doi: 10.1093/toxsci/kfad018
- Matozzo V, Fabrello J, Marin MG. The effects of glyphosate and its commercial formulations to marine invertebrates: a review. J Mar Sci Eng 2020;8(6):399. doi: 10.3390/jmse8060399
- Gillezeau C, van Gerwen M, Shaffer RM, Rana I, Zhang L, Sheppard L, Taioli E. The evidence of human exposure to glyphosate: a review. Environ Health 2019;18(1):2. doi: 10.1186/s12940-018-0435-5
- Timperley CM, Forman JE, Abdollahi M, Al-Amri AS, Baulig A, Benachour D, Borrett V, Cariño FA, Geist M, Gonzalez D, Kane W, Kovarik Z, Martínez-Álvarez R, Mourão NMF, Neffe S, Raza SK, Rubaylo V, Suárez AG, Takeuchi K, Tang C, Trifirò F, van Straten FM, Vanninen PS, Vučinić S, Zaitsev V, Zafar-Uz-Zaman M, Zina MS, Holen S. Advice on assistance and protection provided by the Scientific Advisory Board of the Organisation for the Prohibition of Chemical Weapons: Part 1. On medical care and treatment of injuries from nerve agents. Toxicology 2019;415:56–69. doi: 10.1016/j.tox.2019.01.004
- Naughton SX, Terry AV Jr. Neurotoxicity in acute and repeated organophosphate exposure. Toxicology 2018;408:101–12. doi: 10.1016/j.tox.2018.08.011
- Kwiatkowska M, Nowacka-Krukowska H, Bukowska B. The effect of glyphosate, its metabolites and impurities on erythrocyte acetylcholinesterase activity. Environ Toxicol Pharmacol 2014;37:1101–8. doi: 10.1016/j.etap.2014.04.008
- Milić M, Žunec S, Micek V, Kašuba V, Mikolić A, Lovaković BT, Živković Semren T, Pavičić I, Čermak AMM, Pizent A, Lucić Vrdoljak A, Valencia-Quintana R, Sánchez-Alarcón J, Želježić D. Oxidative stress, cholinesterase activity, and DNA damage in the liver, whole blood, and plasma of Wistar rats following a 28-day exposure to glyphosate. Arh Hig Rada Toksikol 2018;69:154–68. doi: 10.2478/aiht-2018-69-3114
- Martins-Gomes C, Coutinho T E, Silva TL, Andreani T, Silva AM. Neurotoxicity assessment of four different pesticides using in vitro enzymatic inhibition assays. Toxics 2022;10(8):448. doi: 10.3390/toxics10080448
- Čadež T, Kolić D, Šinko G, Kovarik Z. Assessment of four organophosphorus pesticides as inhibitors of human acetylcholinesterase and butyrylcholinesterase. Sci Rep 2021;11(1):21486. doi: 10.1038/s41598-021-00953-9
- Pehar V, Kolić D, Zandona A, Šinko G, Katalinić M, Stepanić V, Kovarik Z. Selected herbicides screened for toxicity and analysed as inhibitors of both cholinesterases. Chem Biol Interact 2023;379:110506. doi: 10.1016/j.cbi.2023.110506
- Kovarik Z, Čalić M, Šinko G, Bosak A. Structure-activity approach in the reactivation of tabun-phosphorylated human acetylcholinesterase with bispyridinium para-aldoximes. Arh Hig Rada Toksikol 2007;58:201–9. doi: 10.2478/v10004-007-0013-7.
- Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9
- Larsen KE, Lifschitz AL, Lanusse CE, Virkel GL. The herbicide glyphosate is a weak inhibitor of acetylcholinesterase in rats. Environ Toxicol Pharmacol 2016;45:41–4. doi: 10.1016/j.etap.2016.05.012
- El-Demerdash FM, Yousef MI, Elagamy EI. Influence of paraquat, glyphosate, and cadmium on the activity of some serum enzymes and protein electrophoretic behavior (in vitro). J Environ Sci Health Part B 2001;36:29–42. doi: 10.1081/pfc-100000914
- Takeuchi I, Yanagawa Y, Nagasawa H, Jitsuiki K, Madokoro S, Takahashi N, Ohsaka H, Ishikawa K, Omori K. Decrease in butyrylcholinesterase accompanied by intermediate-like syndrome after massive ingestion of a glyphosate-surfactant. Intern Med 2019;58:3057–59. doi: 10.2169/internalmedicine.2562-18
- Richardson JR, Fitsanakis V, Westerink RHS, Kanthasamy AG. Neurotoxicity of pesticides. Acta Neuropathol 2019;138:343–62. doi: 10.1007/s00401-019-02033-9
- Zandona A, Zorbaz T, Miš K, Pirkmajer S, Katalinić M. Cytotoxicity-related effects of imidazolium and chlorinated bispyridinium oximes in SH-SY5Y cells. Arh Hig Rada Toksikol 2022;73:277–84. doi: 10.2478/aiht-2022-73-3688
- Costas-Ferriera C, Durán R, Faro LRF. Toxic Effects of glyphosate on the nervous system: A systematic review. Int J Mol Sci 2022;23:4605. doi: 10.3390/ijms23094605
- Martínez MA, Rodríguez JL, Lopez-Torres B, Martínez M, Martínez-Larrañaga MR, Maximiliano JE, Anadón A, Ares I. Use of human neuroblastoma SH-SY5Y cells to evaluate glyphosate-induced effects on oxidative stress, neuronal development and cell death signaling pathways. Environ Int 2020;135:105414. doi: 10.1016/j.envint.2019.105414
- Martinez A, Al-Ahmad AJ. Effects of glyphosate and aminomethylphosphonic acid on an isogeneic model of the human blood-brain barrier. Toxicol Lett 2019;304:39–49. doi: 10.1016/j.toxlet.2018.12.013
- Cattani D, de Liz Oliveira Cavalli VL, Rieg CEH, Domingues JT, Dal-Cim T, Tasca CI, Mena Barreto Silva FR, Zamoner A. Mechanisms underlying the neurotoxicity induced by glyphosate-based herbicide in immature rat hippocampus: involvement of glutamate excitotoxicity. Toxicology 2014;320:34–45. doi: 10.1016/j.tox.2014.03.001
- Kovarik Z, Moshitzky G, Maček Hrvat N, Soreq H. Recent advances in cholinergic mechanisms as reactions to toxicity, stress, and neuroimmune insults. J Neurochem 2023. doi: 10.1111/jnc.15887. Online ahead of print
- Kolić D, Kovarik Z. N-methyl-d-aspartate receptors: Structure, function, and role in organophosphorus compound poisoning. Biofactors 2024. doi: 10.1002/biof.2048. Online ahead of print
- Gallegos CE, Bartos M, Gumilar F, Raisman-Vozari R, Minetti A, Baier CJ. Intranasal glyphosate-based herbicide administration alters the redox balance and the cholinergic system in the mouse brain. Neurotoxicology 2020;77:205–15. doi: 10.1016/j.neuro.2020.01.007
- Baier CJ, Gallegos CE, Raisman-Vozari R, Minetti A. Behavioral impairments following repeated intranasal glyphosate-based herbicide administration in mice. Neurotoxicol Teratol 2017;64:63–72. doi: 10.1016/j.ntt.2017.10.004
- Bali YA, Kaikai N, Ba-M’hamed S, Bennis M. Learning and memory impairments associated to acetylcholinesterase inhibition and oxidative stress following glyphosate based-herbicide exposure in mice. Toxicology 2019;415:18–25. doi: 10.1016/j.tox.2019.01.010
- Winstone JK, Pathak KV, Winslow W, Piras IS, White J, Sharma R, Huentelman MJ, Pirrote P, Velazquez R. Glyphosate infiltrates the brain and increases pro-inflammatory cytokine TNFα: implications for neurodegenerative disorders. J Neuroinflammation 2022;19(1):193. doi: 10.1186/s12974-022-02544-5