Have a personal or library account? Click to login
Combined effects of valproate and naringin on kidney antioxidative markers and serum parameters of kidney function in C57BL6 mice Cover

Combined effects of valproate and naringin on kidney antioxidative markers and serum parameters of kidney function in C57BL6 mice

Open Access
|Sep 2023

References

  1. Anguissola G, Leu D, Simonetti GD, Simonetti BG, Lava SAG, Milani GP, Bianchetti MG, Scoglio M. Kidney tubular injury induced by valproic acid: systematic literature review. Pediatr Nephrol 2023;38:1725–31. doi: 10.1007/s00467-022-05869-8
  2. Karatzas A, Paridis D, Kozyrakis D, Tzortzis V, Samarinas M, Dailiana Z, Karachalios T. Fanconi syndrome in the adulthood. The role of early diagnosis and treatment. J Musculoskelet Neuronal Interact 2017;17:303–6. PMCID: PMC5749037
  3. Heidari R, Jafari F, Khodaei F, ShiraziYeganeh B, Niknahad H. Mechanism of valproic acid induced Fanconi syndrome involves mitochondrial dysfunction and oxidative stress in rat kidney. Nephrology 2018; 23:351–61. doi: 10.1111/nep.13012
  4. Ono H. Sodium valproate-induced Fanconi syndrome in two severely disabled patients receiving carnitine supplementation. Clin Exp Nephrol 2019;23:148–9. doi: 10.1007/s10157-018-1581-3
  5. Gezginci-Oktayoglu S, Turkyilmaz IB, Ercin M, Yanardag R, Bolkent S. Vitamin U has a protective effect on valproic acid-induced renal damage due to its anti-oxidant, anti-inflammatory, and anti-fibrotic properties. Protoplasma 2016;253:127–35. doi: 10.1007/s00709-015-0796-3
  6. El-Shenawy NS, Hamza RZ. Nephrotoxicity of sodium valproate and protective role of L-cysteine in rats at biochemical and histological levels. J Basic Clin Physiol Pharmacol 2016;27:497–504. doi: 10.1515/jbcpp-2015-0106
  7. Chaudhary S, Ganjoo P, Raiusddin S, Parvez S. Nephroprotective activities of quercetin with potential relevance to oxidative stress induced by valproic acid. Protoplasma 2015;252:209–17. doi: 10.1007/s00709-014-0670-8
  8. Koroglu OF, Gunata M, Vardi N, Yildiz A, Ates B, Colak C, Tanriverdi LH, Parlakpinar H. Protective effects of naringin on valproic acid-induced hepatotoxicity in rats. Tissue Cell 2021;72:101526. doi: 10.1016/j.tice.2021.101526
  9. Jutrić D, Đikić D, Boroš A, Odeh D, Drozdek SD, Gračan R, Dragičević P, Crnić I, Jurčević IL. Effects of naringin and valproate interaction on liver steatosis and dyslipidaemia parameters in male C57BL6 mice. Arh Hig Rada Toksikol 2022;73:71–82. doi: 10.2478/aiht-2022-73-3608
  10. Stabrauskiene J, Kopustinskiene DM, Lazauskas R, Bernatoniene J. Naringin and naringenin: their mechanisms of action and the potential anticancer activities. Biomedicines 2022;10:1686. doi: 10.3390/biomedicines10071686
  11. Amini N, Maleki M, Badavi M. Nephroprotective activity of naringin against chemical-induced toxicity and renal ischemia/reperfusion injury: A review. Avicenna J Phytomed 2022;12:357–70. doi: 10.22038/AJP.2022.19620
  12. Wang R, Wu G, Dai T, Lang Y, Chi Z, Yang S, Dong D. Naringin attenuates renal interstitial fibrosis by regulating the TGF-β/Smad signaling pathway and inflammation. Exp Ther Med 2021;21:66. doi: 10.3892/etm.2020.9498
  13. Elsawy H, Alzahrani AM, Alfwuaires M, Abdel-Moneim AM, Khalil M. Nephroprotective effect of naringin in methotrexate induced renal toxicity in male rats. Biomed Pharmacother 2021;143:112180. doi: 10.1016/j.biopha.2021.112180
  14. Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the care and use of laboratory animals. 8th ed. Washington (DC): National Academies Press; 2011.
  15. Landeka Jurčević I, Dora M, Guberović I, Petras M, Rimac S, Brnčić, Đikić D. Polyphenols from wine lees as a novel functional bioactive compound in the protection against oxidative stress and hyperlipidaemia. Food Technol Biotechnol 2017;55:109–16. doi: 10.17113/ftb.55.01.17.4894
  16. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265–75. doi: 10.1016/S0021-9258(19)52451-6
  17. Flohé L, Ötting F. Superoxide dismutase assays. Meth Enzymol 1984;105:93–104. doi: 10.1016/s0076-6879(84)05013-8
  18. Aebi H. Catalase in vitro. Meth Enzymol 1984;105:121–6. doi: 10.1016/s0076-6879(84)05016-3
  19. Eyer P, Worek F, Kiderlen D, Sinko G, Stuglin A, Simeon-Rudolf V, Reiner E. Molar absorption coefficients for the reduced Ellman reagent: reassessment. Anal Biochem 2003;312:224–7. doi: 10.1016/s0003-2697(02)00506-7
  20. Pirahanchi Y, Jessu R, Aeddula NR. Physiology, sodium potassium pump. Treasure Island (FL). StatPearls Publishing; 2022.
  21. White KE, Gesek FA, Nesbitt T, Drezner MK, Friedman PA. Molecular dissection of Ca2+ efflux in immortalized proximal tubule cells. J Gen Physiol 1997;109:217–28. doi: 10.1085/jgp.109.2.217
  22. Curry JN, Yu ASL. Paracellular calcium transport in the proximal tubule and the formation of kidney stones. Am J Physiol Renal Physiol 2019;316:966–9. doi: 10.1152/ajprenal.00519.2018
  23. Gumz ML, Lynch IJ, Greenlee MM, Cain BD, Wingo CS. The renal H+-K+-ATPases: physiology, regulation, and structure. Am J Physiol Renal Physiol 2010;298:12–21. doi: 10.1152/ajprenal.90723.2008
  24. Đikić D, Jutrić D, Dominko K. The dual nature of the antiepileptic drug valproic acid, with possible beneficial effects in Alzheimer’s disease. SEEMEDJ 2017;1:74–89. doi: 10.26332/seemedj.v1i1.26
  25. Monostory K, Nagy A, Tóth K, Bűdi T, Kiss Á, Déri M, Csukly G. Relevance of CYP2C9 function in valproate therapy. Curr Neuropharmacol 2019;17:99–106. doi: 10.2174/1570159X15666171109143654
  26. Knights KM, Rowland A, Miners JO. Renal drug metabolism in humans: the potential for drug-endobiotic interactions involving cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT). Br J Clin Pharmacol 2013;76:587–602. doi: 10.1111/bcp.12086
  27. Ding S, Qiu H, Huang J, Chen R, Zhang J, Huang B, Zou X, Cheng O, Jiang Q. Activation of 20-HETE/PPARs involved in reno-therapeutic effect of naringenin on diabetic nephropathy. Chem Biol Interact 2019;307:116–24. doi: 10.1016/j.cbi.2019.05.004
  28. Oyagbemi AA, Omobowale TO, Adejumobi OA, Owolabi AM, Ogunpolu BS, Falayi OO, Hassan FO, Ogunmiluyi IO, Asenuga ER, Ola-Davies OE, Soetan KO, Saba AB, Adedapo AA, Nkadimeng SM, McGaw LJ, Oguntibeju OO, Yakubu MA. Antihypertensive power of Naringenin is mediated via attenuation of mineralocorticoid receptor (MCR)/ angiotensin converting enzyme (ACE)/kidney injury molecule (Kim-1) signaling pathway. Eur J Pharmacol 2020;880:173142. doi: 10.1016/j.ejphar.2020.173142
  29. Amudha K, Pari L. Beneficial role of naringin, a flavanoid on nickel induced nephrotoxicity in rats. Chem Biol Interact 2011;193:57–64. doi: 10.1016/j.cbi.2011.05.003
  30. Caglayan C, Temel Y, Kandemir FM, Yildirim S, Kucukler S. Naringin protects against cyclophosphamide-induced hepatotoxicity and nephrotoxicity through modulation of oxidative stress, inflammation, apoptosis, autophagy, and DNA damage. Environ Sci Pollut Res Int 2018;25:20968–84. doi: 10.1007/s11356-018-2242-5
  31. Singh D, Chander V, Chopra K. Protective effect of naringin, a bioflavonoid on glycerol-induced acute renal failure in rat kidney. Toxicology 2004;201:143–51. doi: 10.1016/j.tox.2004.04.018
  32. Amini N, Sarkaki A, Dianat M, Mard SA, Ahangarpour A, Badavi M. The renoprotective effects of naringin and trimetazidine on renal ischemia/ reperfusion injury in rats through inhibition of apoptosis and downregulation of micoRNA-10a. Biomed Pharmacother 2019;112:108568. doi: 10.1016/j.biopha.2019.01.029
  33. Galati G, Chan T, Wu B, O’Brien PJ. Glutathione-dependent generation of reactive oxygen species by the peroxidase-catalyzed redoxcycling of flavonoids. Chem Res Toxicol 1999;12:521–525. doi: 10.1021/tx980271b
DOI: https://doi.org/10.2478/aiht-2023-74-3764 | Journal eISSN: 1848-6312 | Journal ISSN: 0004-1254
Language: English, Croatian, Slovenian
Page range: 218 - 223
Submitted on: Jul 1, 2023
Accepted on: Sep 1, 2023
Published on: Sep 30, 2023
Published by: Institute for Medical Research and Occupational Health
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 David Jutrić, Domagoj Đikić, Almoš Boroš, Dyana Odeh, Romana Gračan, Anđelo Beletić, Irena Landeka Jurčević, published by Institute for Medical Research and Occupational Health
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.