References
- European Trade Union Institute. Inclusion of Hazardous Medicinal Products within the scope of the Carcinogens and Mutagens Directive [displayed 20 March 2023]. Available at https://www.stopcanceratwork.eu/wp-content/uploads/2020/10/ETUI-Briefing-Note-HMP-CMD4.pdf
- Musu T, Vogel L. Cancer and work: understanding occupational cancers and taking action to eliminate them, 2018 [displayed 23 March 2023]. Available at https://policycommons.net/artifacts/2067248/cancer-and-work/2821452/
- Petralia SA, Dosemeci M, Adams EE, Zahm SH. Cancer mortality among women employed in health care occupations in 24 U.S. States, 1984–1993. Am J Ind Med 1999;36:159–65. doi: 10.1002/(SICI)1097-0274(199907)36:1<;159::AID-AJIM23>3.0.CO;2-K
- Ratner PA, Spinelli JJ, Beking K, Lorenzi M, Chow Y, Teschke K, Le ND, Gallagher RP, Dimich-Ward H. Cancer incidence and adverse pregnancy outcome in registered nurses potentially exposed to antineoplastic drugs. BMC Nurs 2010;9:15. doi: 10.1186/1472-6955-9-15
- European Biosafety Network. Protecting health workers from hazardous products [displayed 23 March 2023]. Available at https://www.europeanbiosafetynetwork.eu/protecting-health-workers-from-hazardous-products/
- Skov T, Maarup B, Olsen J, Rørth M, Winthereik H, Lynge E. Leukaemia and reproductive outcome among nurses handling antineoplastic drugs. Occup Environ Med 1992;49:855–61. doi: 10.1136/oem.49.12.855
- Martin S, Larson E. Chemotherapy-handling practices of outpatient and office-based oncology nurses. Oncol Nurs Forum 2003;30:575–81. doi: 10.1188/03.ONF.575-581
- Lawson CC, Rocheleau CM, Whelan EA, Lividoti Hibert EN, Grajewski B, Spiegelman D, Rich-Edwards JW. Occupational exposures among nurses and risk of spontaneous abortion. Obstet Anesth Digest 2013;33:36–7. doi: 10.1097/01.aoa.0000426099.31929.92
- Directive (EU) 2019/983 of the European Parliament and of the Council of 5 June 2019 amending Directive 2004/37/EC on the protection of workers from the risks related to exposure to carcinogens or mutagens at work [displayed 11 June 2023]. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32019L0983
- European Public Service Unions (EPSU). HOSPEEM-EPSU position in view of the European Commission study supporting the assessment of different options concerning the protection of workers from exposure to hazardous medicinal products, including cytotoxic medicinal products [displayed 23 March 2023]. Available at https://www.epsu.org/sites/default/files/article/files/HOSPEEM-EPSU-position-Carcinogens-and-Mutagens-Directive_0.pdf
- Publications Office of the EU. Study supporting the assessment of different options concerning the protection of workers from exposure to hazardous medicinal products, including cytotoxic medicinal products [displayed 23 March 2023]. Available at https://op.europa.eu/en/publication-detail/-/publication/f43015ec-a24f-11eb-b85c-01aa75ed71a1/language-en
- Directive (EU) 2022/431 of the European Parliament and of the Council of 9 March 2022 amending Directive 2004/37/EC on the protection of workers from the risks related to exposure to carcinogens or mutagens at work [displayed 19 April 2023]. Available at https://eur-lex.europa.eu/eli/dir/2022/431/oj
- Regulation (EC) no 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006 [displayed 11 June 2023]. Available at https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32008R1272
- European Biosafety Network. Online workshops: Guidance document for the safe management of hazardous medicinal products at work [displayed 19 April 2023]. Available at https://www.europeanbiosafetynetwork.eu/online-workshops-guidance-document-for-the-safe-management-of-hazardous-medicinal-products-at-work/
- European Trade Union Institute. The ETUI’s list of hazardous medicinal products (HMPs) including cytotoxics and based on the EU CLP classification system of Carcinogenic, Mutagenic and Reprotoxic (CMR) substances [displayed 20 March 2023]. Available at https://www.etui.org/publications/etuis-list-hazardous-medicinal-products-hmps
- Gurusamy KS, Best LMJ, Tanguay C, Lennan E, Korva M, Bussières JF. Closed-system drug-transfer devices plus safe handling of hazardous drugs versus safe handling alone for reducing exposure to infusional hazardous drugs in healthcare staff. Cochrane Database Syst Rev 2018;2018(3):CD012860. doi: 10.1002/14651858.CD012860.pub2
- Schierl R, Masini C, Groeneveld S, Fischer E, Böhlandt A, Rosini V, Paolucci D. Environmental contamination by cyclophosphamide preparation: Comparison of conventional manual production in biological safety cabinet and robot-assisted production by APOTECAchemo. J Oncol Pharm Pract 2016;22:37–45. doi: 10.1177/1078155214551316
- Krämer I, Federici M, Schierl R. Environmental and product contamination during the preparation of antineoplastic drugs with robotic systems. Pharm Technol Hosp Pharm 2018;3:153–64. doi: 10.1515/pthp-2018-0018
- Ndaw S, Remy A. Occupational exposure to antineoplastic drugs in twelve French health care setting: biological monitoring and surface contamination. Int J Environ Res Public Health 2023;20(6):4952. doi: 10.3390/ijerph20064952
- Labrèche F, Ouellet C, Roberge B, Caron NJ, Yennek A, Bussières JF. Occupational exposure to antineoplastic drugs: what about hospital sanitation personnel? Int Arch Occup Environ Health 2021;94:1877–88. doi: 10.1007/s00420-021-01731-w
- Leso V, Sottani C, Santocono C, Russo F, Grignani E, Iavicoli I. Exposure to antineoplastic drugs in occupational settings: a systematic review of biological monitoring data. Int J Environ Res Public Health 2022;19(6):3737. doi: 10.3390/ijerph19063737
- Connor TH. Hazardous anticancer drugs in health care. Ann N Y Acad Sci 2006;1076:615–23. doi: 10.1196/annals.1371.021
- Dugheri S, Bonari A, Pompilio I, Boccalon P, Mucci N, Arcangeli G. A new approach to assessing occupational exposure to antineoplastic drugs in hospital environments. Arh Hig Rada Toksikol 2018;69:226–37. doi: 10.2478/aiht-2018-69-3125
- Mucci N, Dugheri S, Farioli A, Garzaro G, Rapisarda V, Campagna M, Bonari A, Arcangeli G. Occupational exposure to antineoplastic drugs in hospital environments: potential risk associated with contact with cyclophosphamide-and ifosfamide-contaminated surfaces. Med Pr 2020;71:519–29. doi: 10.13075/mp.5893.00931
- Dugheri S, Mucci N, Mini E, Cappelli G, Bucaletti E, Squillaci D, Trevisani L, Arcangeli G. An update on permeation of protective medical gloves by antineoplastic drugs. Sigurnost 2022;64:341–57. doi: 10.31306/s.64.4.2
- Medrux. Chemo Rated Nitrile Gloves According to Experts [displayed 23 March 2023]. Available at https://medrux.com/chemo-rated-nitrile-gloves/
- Brand Mark Res. Nitrile Gloves Market Size, Share & Trends Analysis Report By Type (Powdered, Powder-Free), By Grade (Medical Grade, Industrial Grade, Food Grade), By Texture (Smooth, Micro Roughened, Aggressively Textured), By End-Use (Medical & Healthcare, Food & Beverage, Automotive, Oil & Gas, Construction, Chemical, Pharmaceutical, Metals & Machinery, Others) Based On Region, And Segment Forecasts, 2022–2028 [displayed 19 April 2023]. Available at https://brandessenceresearch.com/chemical-and-materials/nitrile-gloves-market
- MedSupply. History of Nitrile Gloves, 2021 [displayed 23 March 2023]. Available at https://www.med-supply.net/blogs/product-specifications/nitrile-gloves-history
- Perkins JL, Pool B. Batch lot variability in permeation through nitrile gloves. Am Ind Hyg Assoc J 1997;58:474–9. doi: 10.1080/15428119791012568
- Phalen RN, Hee SSQ, Xu W, Wong WK. Acrylonitrile content as a predictor of the captan permeation resistance for disposablenitrile rubber gloves. J Appl Polym Sci 2007;103:2057–63. doi: 10.1002/app.25349
- Brouwer DH, Aitken RJ, Oppl R, Cherrie JW. Concepts of skin protection: considerations for the evaluation and terminology of the performance of skin protective equipment. J Occup Environ Hyg 2005;2:425–34. doi: 10.1080/15459620500220453
- Mickelsen RL, Hall RC. A breakthrough time comparison of nitrile and neoprene glove materials produced by different glove manufacturers. Am Ind Hyg Assoc J 1987;48:941–7. doi: 10.1080/15298668791385859
- Performance of Protective Clothing [displayed 20 April 2023]. Available at https://www.astm.org/stp900-eb.html
- Phalen RN, Dubrovskiy AV, Brown BC, Gvetadze AR, Bustillos M, Ogbonmwan J. Chemical permeation of similar disposable nitrile gloves exposed to volatile organic compounds with different polarities Part 2. Predictive polymer properties. J Occup Environ Hyg 2020;17:172–80. doi: 10.1080/15459624.2020.1721511
- Phalen RN, Wong WK. Tensile properties and integrity of clean room and low-modulus disposable nitrile gloves: a comparison of two dissimilar glove types. Ann Occup Hyg 2012;56:450–7. doi: 10.1093/annhyg/mer116
- Nelson DI, Phalen RN. Review of the performance, selection, and use of gloves for chemical protection. ACS Chem Health Saf 2022;29:39–48. doi: 10.1021/acs.chas.1c00084
- Dugheri S, Mucci N, Squillaci D, Marrubini G, Bartolucci G, Melzi C, Bucaletti E, Cappelli G, Trevisani L, Arcangeli G. Developing a fast ultra-high-performance liquid chromatography-tandem mass spectrometry method for high-throughput surface contamination monitoring of 26 antineoplastic drugs. Separations 2021;8:150. doi: 10.3390/separations8090150
- Dugheri S, Mucci N, Squillaci D, Bucaletti E, Cappelli G, Trevisani L, Valsecchi C, Consonni V, Gosetti F, Ballabio D, Arcangeli G. Expanding antineoplastic drugs surface monitoring profiles: enhancing of zwitterionic hydrophilic interaction methods. Separations 2022;9:34. doi: 10.3390/separations9020034
- Oriyama T, Yamamoto T, Nara K, Kawano Y, Nakajima K, Suzuki H, Aoyama T. Prediction of the permeability of antineoplastic agents through nitrile medical gloves by zone classification based on their physicochemical properties. J Pharm Health Care Sci 2020;6:23. doi: 10.1186/s40780-020-00179-3
- European Biosafety Network. Amendments to the carcinogens and mutagens directive on hazardous drugs and implications for change to the healthcare system in Europe to ensure compliance with its requirements [displayed 20 March 2023]. Available at https://www.europeanbiosafetynetwork.eu/wp-content/uploads/2019/03/Amendments-to-CMD3-and-implications.pdf
- Mason HJ, Morton J, Garfitt SJ, Iqbal S, Jones K. Cytotoxic drug contamination on the outside of vials delivered to a hospital pharmacy. Ann Occup Hyg 2003;47:681–5. doi: 10.1093/annhyg/meg078
- Connor TH, Sessink PJM, Harrison BR, Pretty JR, Peters BG, Alfaro RM, Bilos A, Beckmann G, Bing MR, Anderson LM, DeChristoforo R. Surface contamination of chemotherapy drug vials and evaluation of new vial-cleaning techniques: Results of three studies. Am J Health Syst Pharm 2005;62:475–84. doi: 10.1093/ajhp/62.5.475
- Hilliquin D, Bussières J. External contamination of antineoplastic drug containers from a Canadian wholesaler. J Oncol Pharm Pract 2020;26:423–7. doi: 10.1177/1078155219868525
- Nygren O, Gustavsson B, Ström L, Friberg A. Cisplatin contamination observed on the outside of drug vials. Ann Occup Hyg 2002;46:555–7. doi: 10.1093/annhyg/mef074
- Sessink PJM, Boer KA, Scheefhals APH, Anzion RBM, Bos RP. Occupational exposure to antineoplastic agents at several departments in a hospital. Environmental contamination and excretion of cyclophosphamide and ifosfamide in urine of exposed workers. Int Arch Occup Environ Health 1992;64:105–12. doi: 10.1007/BF00381477
- Delporte JP, Chenoix P, Hubert PH. Chemical contamination of the primary packaging of 5-Fluorouracil RTU solutions commercially available on the Belgian market. Eur Hospital Pharm 1999;5:119–21.
- Osawa T, Naito T, Suzuki N, Imai K, Nakanishi K, Kawakami J. Validated method using liquid chromatography-electrospray ionization tandem mass spectrometry for the determination of contamination of the exterior surface of vials containing platinum anticancer drugs. Talanta 2011;85:1614–20. doi: 10.1016/j.talanta.2011.06.059
- Fleury-Souverain S, Nussbaumer S, Mattiuzzo M, Bonnabry P. Determination of the external contamination and cross-contamination by cytotoxic drugs on the surfaces of vials available on the Swiss market. J Oncol Pharm Pract 2014;20:100–11. doi: 10.1177/1078155213482683
- Schierl R, Herwig A, Pfaller A, Groebmair S, Fischer E. Surface contamination of antineoplastic drug vials: comparison of unprotected and protected vials. Am J Health Syst Pharm 2010;67:428–9. doi: 10.2146/ajhp080621
- Korczowska E, Jankowiak-Gracz H, Crul M, Tuerk J, Arnold D, Meier K. 3PC-041 Surface contamination with cytotoxic drugs in European hospital wards. Eur J Hosp Pharm 2020;27(Suppl 1):A41. doi: 10.1136/ejhpharm-2020-eahpconf.88
- Korczowska E, Crul M, Tuerk J, Meier K. Environmental contamination with cytotoxic drugs in 15 hospitals from 11 European countries-results of the MASHA project. Eur J Oncol Pharm 2020;3(2):pe24. doi: 10.1097/OP9.0000000000000024
- Lancharro PM, Iglesias NDCA, González-Barcala FJ, González JDM. Evidence of exposure to cytostatic drugs in healthcare staff: a review of recent literature. Farm Hosp 2016;40:604–21. doi: 10.7399/fh.2016.40.6.9103
- Hilliquin D, Tanguay C, Bussières J-F. External contamination of commercial containers by antineoplastic agents: a literature review. Eur J Hosp Pharm 2020;27:313–4. doi: 10.1136/ejhpharm-2018-001705
- Crauste-Manciet S, Sessink PJM, Ferrari S, Jomier J-Y, Brossard D. Environmental contamination with cytotoxic drugs in healthcare using positive air pressure isolators. Ann Occup Hyg 2005;49:619–28. doi: 10.1093/annhyg/mei045
- Cotteret C, Secretan P-H, Gilles-Afchain L, Rousseau J, Vidal F, Salguero-Hernandez G, Batista J, Valverde V, Guitton J, Cisternino S, Schlatter J. External contamination of antineoplastic drug vials: an occupational risk to consider. Eur J Hosp Pharm 2022;29:284–6. doi: 10.1136/ejhpharm-2020-002440
- Dugheri S, Mucci N, Bucaletti E, Squillaci D, Cappelli G, Trevisani L, Bonari A, Cecchi M, Mini E, Ghiori A, Tognoni D, Berti N, Alderighi F, Li Vigni N, Orlandi I, Arcangeli G. Monitoring surface contamination for thirty antineoplastic drugs: a new proposal for surface exposure levels (SELs). Med Pr 2022;73:383–96. doi: 10.13075/mp.5893.01288
- Rubino FM, Verduci C, Buratti M, Fustinoni S, Campo L, Omodeo-Salè E, Giglio M, Iavicoli S, Brambilla G, Colombi A. Assay of urinary α-fluoro-β-alanine by gas chromatography-mass spectrometry for the biological monitoring of occupational exposure to 5-fluorouracil in oncology nurses and pharmacy technicians. Biomed Chromatogr 2006;20:257–66. doi: 10.1002/bmc.559
- Wallemacq PE, Capron A, Vanbinst R, Boeckmans E, Gillard J, Favier B. Permeability of 13 different gloves to 13 cytotoxic agents under controlled dynamic conditions. Am J Health Syst Pharm 2006;63:547–56. doi: 10.2146/ajhp050197
- Nalin M, Hug G, Boeckmans E, Machon C, Favier B, Guitton J. Permeation measurement of 27 chemotherapy drugs after simulated dynamic testing on 15 surgical and examination gloves: A knowledge update. J Oncol Pharm Pract 2021;27:1395–408. doi: 10.1177/1078155220950423
- Phalen RN, Wong WK. Polymer properties associated with chemical permeation performance of disposable nitrile rubber gloves. J Appl Polym Sci 2015;132:41449. doi: 10.1002/app.41449
- Covalent Metrology. Analysis of laboratory nitrile gloves: From pores to the surface. Relevant for: rubber, thin films, elastomers, atomic force microscopy, density testing, nanostructure analysis, surface roughness, surface area [displayed 20 March 2023]. Available at https://covalentmetrology.com/wp-content/uploads/2021/05/D53IA031EN-B_ApplReport_RubberGlove.pdf