References
- Alomar TS, AlMasoud N, Awad MA, El-Tohamy MF, Soliman DA. An eco-friendly plant-mediated synthesis of silver nanoparticles: Characterization, pharmaceutical and biomedical applications. Mater Chem Phys 2020;249:123007. doi: 10.1016/j.matchemphys.2020.123007
- Gul AR, Shaheen F, Rafique R, Bal J, Waseem S, Park TJ. Grass-mediated biogenic synthesis of silver nanoparticles and their drug delivery evaluation: A biocompatible anti-cancer therapy. Chem Eng J 2021;407:127202. doi: 10.1016/j.cej.2020.127202
- Hernández-Arteaga A, Nava JdJZ, Kolosovas-Machuca ES, Velázquez-Salazar JJ, Vinogradova E, José-Yacamán M, Navarro-Contreras HR. Diagnosis of breast cancer by analysis of sialic acid concentrations in human saliva by surface-enhanced Raman spectroscopy of silver nanoparticles. Nano Res 2017;10:3662–70. doi: 10.1007/s12274-017-1576-5
- Küp FÖ, Çoşkunçay S, Duman F. Biosynthesis of silver nanoparticles using leaf extract of Aesculus hippocastanum (horse chestnut): Evaluation of their antibacterial, antioxidant and drug release system activities. Mater Sci Eng C Mater Biol Appl 2020;107:110207. doi: 10.1016/j.msec.2019.110207
- Nejatzadeh F. Effect of silver nanoparticles on salt tolerance of Satureja hortensis l. during in vitro and in vivo germination tests. Heliyon 2021;7(2):e05981. doi: 10.1016/j.heliyon.2021.e05981
- Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv 2019;9:2673–702. doi: 10.1039/c8ra08982e
- Derman S, Uzunoglu D, Acar T, Arasoglu T, Ucak S, Ozalp VC, Mansuroglu B. Antioxidant activity and hemocompatibility study of quercetin loaded Plga nanoparticles. Iranian J Pharm Res 2020;19:424–35. doi: 10.22037/ijpr.2020.1101000
- Arasoglu T, Derman S, Mansuroglu B, Yelkenci G, Kocyigit B, Gumus B, Acar T, Kocacaliskan I. Synthesis, characterization and antibacterial activity of juglone encapsulated PLGA nanoparticles. J Appl Microbiol 2017;123:1407–19. doi: 10.1111/jam.13601
- Folorunso A, Akintelu S, Oyebamiji AK, Ajayi S, Abiola B, Abdusalam I, Morakinyo A. Biosynthesis, characterization and antimicrobial activity of gold nanoparticles from leaf extracts of Annona muricata. J Nan Chem 2019;9:111–7. doi: 10.1007/s40097-019-0301-1
- Ersoz M, Erdemir A, Duranoglu D, Uzunoglu D, Arasoglu T, Derman S, Mansuroglu B. Comparative evaluation of hesperetin loaded nanoparticles for anticancer activity against C6 glioma cancer cells. Artif Cells Nanomed Biotechnol 2019;47:319–29. doi: 10.1080/21691401.2018.1556213
- Keshari AK, Srivastava R, Singh P, Yadav VB, Nath G. Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J Ayurveda Integr Med 2020;11:37–44. doi: 10.1016/j.jaim.2017.11.003
- Groneberg DA, Giersig M, Welte T, Pison U. Nanoparticle-based diagnosis and therapy. Curr Drug Targets 2006;7:643–8. doi: 10.2174/138945006777435245
- Ahamed M, AlSalhi MS, Siddiqui M. Silver nanoparticle applications and human health. Clin Chim Acta 2010;411:1841–8. doi: 10.1016/j.cca.2010.08.016
- Boca SC, Potara M, Gabudean A-M, Juhem A, Baldeck PL, Astilean S. Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy. Cancer Lett 2011;311:131–40. doi: 10.1016/j.canlet.2011.06.022
- Ilyina T, Goryacha O, Toryanik E, Kulish I, Kovaleva A. Antimicrobial activity of the Genus Galium L. 2016;6:42–7. doi: 10.5530/pc.2016.1.8
- Behravan M, Panahi AH, Naghizadeh A, Ziaee M, Mahdavi R, Mirzapour A. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int J Biol Macromol 2019;124:148–54. doi: 10.1016/j.ijbiomac.2018.11.101
- Thakkar KN, Mhatre SS, Parikh RY. Biological synthesis of metallic nanoparticles. Nanomedicine 2010;6:257–62. doi: 10.1016/j.nano.2009.07.002
- Ahmed S, Saifullah, Ahmad M, Swami BL, Ikram S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci 2016;9:1–7. doi: 10.1016/j.jrras.2015.06.006
- Khalil MMH, Ismail EH, El-Baghdady KZ, Mohamed D. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab J Chem 2014;7:1131–9. doi: 10.1016/j.arabjc.2013.04.007
- Xu J, Zhu X, Zhou X, Khusbu FY, Ma C. Recent advances in the bioanalytical and biomedical applications of DNA-templated silver nanoclusters. TrAC Trend Anal Chem 2020;124:115786. doi: 10.1016/j.trac.2019.115786
- Castillo-Henríquez L, Alfaro-Aguilar K, Ugalde-Álvarez J, Vega-Fernández L, Montes de Oca-Vásquez G, Vega-Baudrit JR. Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nanomaterials 2020;10(9):1763. doi: 10.3390/nano10091763
- Oves M, Rauf MA, Aslam M, Qari HA, Sonbol H, Ahmad I, Sarwar Zaman G, Saeed M. Green synthesis of silver nanoparticles by Conocarpus Lancifolius plant extract and their antimicrobial and anticancer activities. Saudi J Biol Sci 2022;29:460–71. doi: 10.1016/j.sjbs.2021.09.007
- Loo YY, Chieng BW, Nishibuchi M, Radu S. Synthesis of silver nanoparticles by using tea leaf extract from Camellia sinensis. Int J Nanomedicine 2012;7:4263–7. doi: 10.2147/ijn.s33344
- Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomedicine 2020;15:2555–62. doi: 10.2147/ijn.s246764
- Ali ZA, Yahya R, Sekaran SD, Puteh R. Green synthesis of silver nanoparticles using apple extract and its antibacterial properties. Adv Mater Sci Engin 2016;2016:ID4102196. doi: 10.1155/2016/4102196
- Senio S, Pereira C, Vaz J, Sokovic M, Barros L, Ferreira ICFR. Dehydration process influences the phenolic profile, antioxidant and antimicrobial properties of Galium aparine L. Ind Crop Prod 2018;120:97–103. doi: 10.1016/j.indcrop.2018.04.054
- Bat Özmatara M. The effect of extraction Methods on Antioxidant and Enzyme Inhibitory Activities and Phytochemical Components of Galium Aparine L. Trakya Univ J Nat Sci 2021;22(1):e1–6. doi: 10.23902/trkjnat.772976
- Vlase L, Mocan A, Hanganu D, Benedec D, Gheldiu A, Crisan G. Comparative study of polyphenolic content, antioxidant and antimicrobial activity of four Galium species (Rubiaceae). Digest J Nanomat Biostruct 2014;9(3):1085–94.
- Atmaca H, Bozkurt E, Cittan M, Tepe HD. Effects of Galium aparine extract on the cell viability, cell cycle and cell death in breast cancer cell lines. J Ethnopharmacol 2016;186:305–10. doi: 10.1016/j.jep.2016.04.007
- Shim J, Park M, Yang S. 574 Anti-inflammatory and antioxidant effects of Galium Aparine extract in macrophage RAW264.7 cells. J Invest Dermatol 2017;137(5 Suppl 1):S99. doi: 10.1016/j.jid.2017.02.596
- Khan MA, Khan J, Ullah S, Malik SA, Shafi M. Hepatoprotective effects of Berberis lycium, Galium aparine and Pistacia integerrima in carbon tetrachloride (CCl4)-treated rats. J Postgrad Med Inst 2008;22(2):91–4.
- Nejdet Ş, KALAYCI G. Chemical composition tannin and coumarin of Helichrysum arenarium [Altın otu bitkisinden (Helichrysum arenarium) tanen ve kumarinin kimyasal kompozisyonu, in Turkey]. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 2016;42(2):226–31.
- Kurkina A, Ryzhov V, Avdeeva E. Assay of isosalipurposide in raw material and drugs from the dwarf everlast (Helichrysum arenarium). Pharm Chem J 2012;46:171–6. doi: 10.1007/s11094-012-0753-9
- Grinev V, Shirokov A, Navolokin N, Polukonova N, Kurchatova M, Durnova N, Bucharskaya AB, Maslyakova GN. Polyphenolic compounds of a new biologically active extract from immortelle sandy flowers (Helichrysum arenarium (L.) Moench.). Russ J Bioorg Chem 2016;42:770–6. doi: 10.1134/S1068162016070086
- Babotă M, Mocan A, Vlase L, Crisan O, Ielciu I, Gheldiu A-M, Vodnar DC, Crisan G, Păltinean R. Phytochemical analysis, antioxidant and antimicrobial activities of Helichrysum arenarium (L.) Moench. and Antennaria dioica (L.) Gaertn. flowers. Molecules 2018;23(2):409. doi: 10.3390/molecules23020409
- Pljevljakušić D, Bigović D, Janković T, Jelačić S, Šavikin K. Sandy everlasting (Helichrysum arenarium (L.) Moench): Botanical, chemical and biological properties. Front Plant Sci 2018;9:1123. doi: 10.3389/fpls.2018.01123
- Stanojević D, Ćomić L, Stefanović O, Solujić-Sukdoloak S. In vitro synergistic antibacterial activity of Helichrysum arenarium, Inula helenium, Cichorium intybus and some preservatives. Ital J Food Sci 2010;22(2):210–6.
- Mohammad Azmin SNH, Abdul Manan Z, Wan Alwi SR, Chua LS, Mustaffa AA, Yunus NA. Herbal processing and extraction technologies. Sep Purif Rev 2016;45:305–20. doi: 10.1080/15422119.2016.1145395
- Radovanović K, Gavarić N, Švarc-Gajić J, Brezo-Borjan T, Zlatković B, Lončar B, Aćimović M. Subcritical water extraction as an effective technique for the isolation of phenolic compounds of Achillea species. Processes 2023;11(1):86. doi: 10.3390/pr11010086
- Silambarasan S, Abraham J. Biosynthesis of silver nanoparticles using the bacteria Bacillus cereus and their antimicrobial property. Int J Pharm Pharm Sci 2012;4(Suppl 1):536–40.
- Wikler MA. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard. CLSI (NCCLS) 2006;26:M7-A.
- Duranoğlu D, Uzunoglu D, Mansuroglu B, Arasoglu T, Derman S. Synthesis of hesperetin-loaded PLGA nanoparticles by two different experimental design methods and biological evaluation of optimized nanoparticles. Nanotechnology 2018;29(39):395603. doi: 10.1088/1361-6528/aad111
- Alsammarraie FK, Wang W, Zhou P, Mustapha A, Lin M. Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Colloids Surf B Biointerfaces 2018;171:398–405. doi: 10.1016/j.colsurfb.2018.07.059
- Hamedi S, Shojaosadati SA. Rapid and green synthesis of silver nanoparticles using Diospyros lotus extract: Evaluation of their biological and catalytic activities. Polyhedron 2019;171:172–80. doi: 10.1016/j.poly.2019.07.010
- Parveen M, Kumar A, Khan MS, Rahman R, Furkan M, Khan RH, Nami SAA. Comparative study of biogenically synthesized silver and gold nanoparticles of Acacia auriculiformis leaves and their efficacy against Alzheimer’s and Parkinson’s disease. Int J Biol Macromol 2022;203:292–301. doi: 10.1016/j.ijbiomac.2022.01.116
- Dakshayani S, Marulasiddeshwara M, Kumar S, Golla R, Devaraja S, Hosamani R. Antimicrobial, anticoagulant and antiplatelet activities of green synthesized silver nanoparticles using Selaginella (Sanjeevini) plant extract. Int J Biol Macromol 2019;131:787–97. doi: 10.1016/j.ijbiomac.2019.01.222
- Clogston JD, Patri AK. Zeta potential measurement. Methods Mol Biol 2011;697:63–70. doi: 10.1007/978-1-60327-198-1_6
- Sreelekha E, George B, Shyam A, Sajina N, Mathew B. A comparative study on the synthesis, characterization, and antioxidant activity of green and chemically synthesized silver nanoparticles. BioNanoScience 2021;11:489–96. doi: 10.1007/s12668-021-00824-7
- Sherin L, Sohail A, Mustafa M, Jabeen R, Ul-Hamid A. Facile green synthesis of silver nanoparticles using Terminalia bellerica kernel extract for catalytic reduction of anthropogenic water pollutants. Colloid Interface Sci Commun 2020;37:100276. doi: 10.1016/j.colcom.2020.100276
- Manosalva N, Tortella G, Diez MC, Schalchli H, Seabra AB, Durán N, Rubilar O. Green synthesis of silver nanoparticles: effect of synthesis reaction parameters on antimicrobial activity. World J Microbiol Biotechnol 2019;35(6):88. doi: 10.1007/s11274-019-2664-3
- Agnihotri S, Mukherji S, Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 2014;4:3974–83. doi: 10.1039/c3ra44507k
- Vishwasrao C, Momin B, Ananthanarayan L. Green synthesis of silver nanoparticles using sapota fruit waste and evaluation of their antimicrobial activity. Waste Biomass Valori 2019;10:2353–63. doi: 10.1007/s12649-018-0230-0
- González-Fuenzalida RA, Moliner-Martínez Y, González-Béjar M, Molins-Legua C, Verdú-Andres J, Pérez-Prieto J, Campins-Falcó P. In situ colorimetric quantification of silver cations in the presence of silver nanoparticles. Anal Chem 2013;85:10013–6. doi: 10.1021/ac402822d
- Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, Tam PK, Chiu JF, Che CM. Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 2007;12:527–34. doi: 10.1007/s00775-007-0208-z
- Abbaszadegan A, Ghahramani Y, Gholami A, Hemmateenejad B, Dorostkar S, Nabavizadeh M, Sharghi H. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. J Nanomat 2015;2015:ID720654. doi: 10.1155/2015/720654
- Rasmussen MK, Pedersen JN, Marie R. Size and surface charge characterization of nanoparticles with a salt gradient. Nat Commun 2020;11(1):2337. doi: 10.1038/s41467-020-15889-3
- Kalwar K, Hu L, Li DL, Shan D. AgNPs incorporated on deacetylated electrospun cellulose nanofibers and their effect on the antimicrobial activity. Polym Adv Technol 2018;29:394–400. doi: 10.1002/pat.4127
- Chand K, Cao D, Fouad DE, Shah AH, Dayo AQ, Zhu K, Lakhan MN, Mehdi G, Dong S. Green synthesis, characterization and photocatalytic application of silver nanoparticles synthesized by various plant extracts. Arab J Chem 2020;13:8248–61. doi: 10.1016/j.arabjc.2020.01.009
- Chand K, Abro MI, Aftab U, Shah AH, Lakhan MN, Cao D, Mehdi G, Mohamed AMA. Green synthesis characterization and antimicrobial activity against Staphylococcus aureus of silver nanoparticles using extracts of neem, onion and tomato. RSC Adv 2019;9:17002–15. doi: 10.1039/c9ra01407a
- Jafari Sales A, Shariat A. Synergistic effects of silver nanoparticles with ethanolic extract of Eucalyptus globules on standard pathogenic bacteria in vitro. Tabari Biomed Stu Res J 2020;2:13–21. doi: 10.18502/tbsrj.v2i3.4528
- Robles-Martínez M, González JFC, Pérez-Vázquez FJ, Montejano-Carrizales JM, Pérez E, Patiño-Herrera R. Antimycotic activity potentiation of Allium sativum extract and silver nanoparticles against Trichophyton rubrum. Chem Biodivers 2019;16(4):e1800525. doi: 10.1002/cbdv.201800525
- Essawy E, Abdelfattah MS, El-Matbouli M, Saleh M. Synergistic effect of biosynthesized silver nanoparticles and natural phenolic compounds against drug-resistant fish pathogens and their cytotoxicity: An in vitro study. Mar Drugs 2021;19(1):22. doi: 10.3390/md19010022
- Nguyen TLA, Bhattacharya D. Antimicrobial activity of quercetin: an approach to its mechanistic principle. Molecules 2022;27(8):2494. doi: 10.3390/molecules27082494
- Stojković D, Petrović J, Soković M, Glamočlija J, Kukić-Marković J, Petrović S. In situ antioxidant and antimicrobial activities of naturally occurring caffeic acid, p-coumaric acid and rutin, using food systems. J Sci Food Agric 2013;93:3205–8. doi: 10.1002/jsfa.6156
- Li G, Wang X, Xu Y, Zhang B, Xia X. Antimicrobial effect and mode of action of chlorogenic acid on Staphylococcus aureus. Eur Food Res Technol 2014;238:589–96. doi: 10.1007/s00217-013-2140-5