References
- Martinez JL, Baquero F. Mutation frequencies and antibiotic resistance. Antimicrob Agents Chemother 2000;44:1771–7. doi: 10.1128/ AAC.44.7.1771-1777.2000
- Boto L, Martinez JL. Ecological and temporal constraints in the evolution of bacterial genomes. Genes (Basel) 2011;2:804–28. doi: 10.3390/genes2040804
- Mackenzie JS, Jeggo M. The one health approach - why is it so important? Trop Med Infect Dis 2019;4(2):88. doi: 10.3390/ tropicalmed4020088
- Martinez JL. General principles of antibiotic resistance in bacteria. Drug Discov Today Technol 2014;11:33–9. doi: 10.1016/j. ddtec.2014.02.001
- World Health Organization (WHO). Antibiotic Resistance [displayed 15 March 2022]. Available at https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance
- Yeh YC, Huang TH, Yang SC, Chen CC, Fang JY. Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: a review of recent advances. Front Chem 2020;8:286. doi: 10.3389/ fchem.2020.00286
- Sofowora A, Ogunbodede E, Onayade A. The role and place of medicinal plants in the strategies for disease prevention. Afr J Tradit Complement Altern Med 2013;10:210–29. doi: 10.4314/ajtcam.v10i5.2
- Chen CH, Lu TK. Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics (Basel) 2020;9(1):24. doi: 10.3390/antibiotics9010024
- Jiang Q, Chen J, Yang C, Yin Y, Yao K. Quorum sensing: a prospective therapeutic target for bacterial diseases. Biomed Res Int 2019;2019:2015978. doi: 10.1155/2019/2015978
- Lin DM, Koskella B, Lin HC. Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther 2017;8:162–73. doi: 10.4292/wjgpt.v8.i3.162
- Gebreyohannes G, Nyerere A, Bii C, Sbhatu DB. Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon 2019;5(8):e02192. doi: 10.1016/j. heliyon.2019.e02192
- Arana L, Gallego L, Alkorta I. Incorporation of antibiotics into solid lipid nanoparticles: a promising approach to reduce antibiotic resistance emergence. Nanomaterials (Basel) 2021;11(5):1251. doi: 10.3390/nano11051251
- Duan Y, Dhar A, Patel C, Khimani M, Neogi S, Sharma P, Kumar NS, Vekariya RL. A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems. RSC Adv 2020;10:26777–91. doi: 10.1039/D0RA03491F
- Marslin G, Revina AM, Khandelwal VK, Balakumar K, Sheeba CJ, Franklin G. PEGylated ofloxacin nanoparticles render strong antibacterial activity against many clinically important human pathogens. Colloids Surf B Biointerfaces 2015;132:62–70. 10.1016/j.colsurfb.2015.04.050
- Sheeba CJ, Marslin G, Revina AM, Franklin G. Signaling pathways influencing tumor microenvironment and their exploitation for targeted drug delivery. Nanotechnol Rev 2014;3:123–51. doi: 10.1515/ ntrev-2013-0032
- Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull 2015;5:305–13. doi: 10.15171/apb.2015.043
- Škalko-Basnet N, Vanić Ž. Lipid-based nanopharmaceuticals in antimicrobial therapy. In: Boukherroub R, Szunerits S, Drider D, editors. Functionalized nanomaterials for the management of microbial infection. London: Elsevier; 2017. p. 111–52.
- Severino P, De Hollanda LM, Santini A, Reis LV, Souto SB, Souto EB, Silva MA. Advances in nanobiomaterials for oncology nanomedicine. In: Grumezescu AM, editor. Nanobiomaterials in cancer therapy: Applications of nanobiomaterials. Vol. 7. Chapter 4. New York (NY): William Andrew Publishing; 2016. p. 91–115.
- Madkhali OA. Perspectives and prospective on solid lipid nanoparticles as drug delivery systems. Molecules 2022;27(5):1543. doi: 10.3390/ molecules27051543
- Esim O, Hascicek C. Lipid-coated nanosized drug delivery systems for an effective cancer therapy. Curr Drug Deliv 2021;18:147–61. doi: 10.2174/1567201817666200512104441
- Elmowafy M, Al-Sanea MM. Nanostructured lipid carriers (NLCs) as drug delivery platform: advances in formulation and delivery strategies. Saudi Pharm J 2021;29:999–1012. doi: 10.1016/j.jsps.2021.07.015
- Misra S, Chopra K, Sinha VR, Medhi B. Galantamine-loaded solid-lipid nanoparticles for enhanced brain delivery: preparation, characterization, in vitro and in vivo evaluations. Drug Deliv 2016;23:1434–43. doi: 10.3109/10717544.2015.1089956
- Yasir M, Sara UVS. Solid lipid nanoparticles for nose to brain delivery of haloperidol: in vitro drug release and pharmacokinetics evaluation. Acta Pharm Sin B 2014;4:454–63. doi: 10.1016/j.apsb.2014.10.005
- Uner M. Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): their benefits as colloidal drug carrier systems. Pharmazie 2006;61:375–86. PMID: 16724531
- The National Center for Biotechnology Information (NCBI). PubChem Compound Summary for CID 152946, Moxifloxacin [displayed 15 March 2022]. Available at https://pubchem.ncbi.nlm.nih.gov/compound/Moxifloxacin
- Guay DR. Moxifloxacin in the treatment of skin and skin structure infections. Ther Clin Risk Manag 2006;2:417–34. doi: 10.2147/ tcrm.2006.2.4.417
- Scholar E. Levofloxacin. In: Enna SJ, Bylund DB, editors. xPharm: The Comprehensive Pharmacology Reference. New York (NY): Elsevier; 2007. p. 1–6.
- Wu D, Ding Y, Yao K, Gao W, Wang Y. Antimicrobial resistance analysis of clinical Escherichia coli isolates in neonatal ward. Front Pediatr 2021;9:670470. doi: 10.3389/fped.2021.670470
- Pinto-Alphandary H, Andremont A, Couvreur P. Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. Int J Antimicrob Agents 2000;13:155–68. doi: 10.1016/ s0924-8579(99)00121-1
- Wong JP, Cherwonogrodzky JW, Di Ninno VL, De la Cruz R, Saravolac EG. Liposome-encapsulates ciprofloxacin for the prevention and treatment of infectious diseases caused by intracellular pathogens. In: Shek PN, editor. Liposomes in biomedical applications. Amsterdam: Harwood Academic Publishers; 1995. p. 105–20.
- Mussi SV, Sawant R, Perche F, Oliveira MC, Azevedo RB, Ferreira LA, Torchilin VP. Novel nanostructured lipid carrier co-loaded with doxorubicin and docosahexaenoic acid demonstrates enhanced in vitro activity and overcomes drug resistance in MCF-7/Adr cells. Pharm Res 2014;31:1882–92. doi: 10.1007/s11095-013-1290-2
- Topal GR, Kiymaci ME, Özkan Y. Preparation and in vitro characterization of vancomycin loaded PLGA nanoparticles for the treatment of Enterococcus faecalis infections. J Fac Pharm Ankara 2022;46:350–63. doi: 10.33483/jfpau.1073081
- Yurtdaş Kırımlıoğlu G, Özer S, Büyükköroğlu G, Yazan Y. Formulation and in vitro evaluation of moxifloxacin hydrochloride-loaded polymeric nanoparticles for ocular application. Lat Am J Pharm 2018;37:1850–62.
- Savaser A, Esim O, Kurbanoglu S, Ozkan SA, Özkan Y. Current perspectives on drug release studies from polymeric nanoparticles. In: Grumezescu AM, editors. Organic materials as smart nanocarriers for drug delivery. New York (NY): William Andrew Publishing; 2018. p. 101–45.
- The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters version 12.0, valid from 2022-01-01 [displayed 15 March 2022]. Available at https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_12.0_Breakpoint_Tables.pdf
- Bacanli M, Esim MO, Erdogan H, Sarper M, Erdem O, Özkan Y. Evaluation of cytotoxic and genotoxic effects of paclitaxel-loaded PLGA nanoparticles in neuroblastoma cells. Food Chem Toxicol 2021;154:112323. doi: 10.1016/j.fct.2021.112323
- Sarwar A, Katas H, Zin NM. Antibacterial effects of chitosan– tripolyphosphate nanoparticles: impact of particle size molecular weight. J Nanoparticle Res 2014;16:2517. doi: 10.1007/s11051-014-2517-9
- Martins S, Tho I, Reimold I, Fricker G, Souto E, Ferreira D, Brandl M. Brain delivery of camptothecin by means of solid lipid nanoparticles: formulation design, in vitro and in vivo studies. Int J Pharm 2012;439:49–62. doi: 10.1016/j.ijpharm.2012.09.054
- Schöler N, Olbrich C, Tabatt K, Müller RH, Hahn H, Liesenfeld O. Surfactant, but not the size of solid lipid nanoparticles (SLN) influences viability and cytokine production of macrophages. Int J Pharm 2001;221:57–67. doi: 10.1016/s0378-5173(01)00660-3
- Lages EB, Fernandes RS, Silva JO, de Souza AM, Cassali GD, de Barros ALB, Miranda Ferreira LA. Co-delivery of doxorubicin, docosahexaenoic acid, and alpha-tocopherol succinate by nanostructured lipid carriers has a synergistic effect to enhance antitumor activity and reduce toxicity. Biomed Pharmacother 2020;132:110876. doi: 10.1016/j.biopha.2020.110876
- Das S, Ng WK, Kanaujia P, Kim S, Tan RB. Formulation design, preparation and physicochemical characterizations of solid lipid nanoparticles containing a hydrophobic drug: effects of process variables. Colloids Surf B Biointerfaces 2011;88:483–9. doi: 10.1016/j. colsurfb.2011.07.036
- Amasya G, Bakar-Ates F, Wintgens V, Amiel C. Layer by layer assembly of core-corona structured solid lipid nanoparticles with beta-cyclodextrin polymers. Int J Pharm 2021;592:119994. doi: 10.1016/j. ijpharm.2020.119994
- Singh S, Dobhal AK, Jain A, Pandit JK, Chakraborty S. Formulation and evaluation of solid lipid nanoparticles of a water soluble drug: Zidovudine. Chem Pharm Bull (Tokyo) 2010;58:650–5. doi: 10.1248/ cpb.58.650
- Al-Qushawi A, Rassouli A, Atyabi F, Peighambari SM, Esfandyari-Manesh M, Shams GR, Yazdani A. Preparation and characterization of three tilmicosin-loaded lipid nanoparticles: physicochemical properties and in-vitro antibacterial activities. Iran J Pharm Res 2016;15:663–76. PMCID:PMC5316245
- Müller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 2002;242:121–8. doi: 10.1016/s0378-5173(02)00180-1
- Ebrahimi S, Farhadian N, Karimi M, Ebrahimi M. Enhanced bactericidal effect of ceftriaxone drug encapsulated in nanostructured lipid carrier against gram-negative Escherichia coli bacteria: drug formulation, optimization, and cell culture study. Antimicrob Resist Infect Control 2020;9(1):28. doi: 10.1186/s13756-020-0690-4
- Kumar S, Bhanjana G, Kumar A, Taneja K, Dilbaghi N, Kim KH. Synthesis and optimization of ceftriaxone-loaded solid lipid nanocarriers. Chem Phys Lipids 2016;200:126–32. doi: 10.1016/j. chemphyslip.2016.09.002
- Esim O, Sarper M, Ozkan CK, Oren S, Baykal B, Savaser A, Ozkan Y. Effect simultaneous delivery with P-glycoprotein inhibitor and nanoparticle administration of doxorubicin on cellular uptake and in vitro anticancer activity. Saudi Pharm J 2020;28:465–72. doi: 10.1016/j. jsps.2020.02.008
- Akbar N, Gul J, Siddiqui R, Shah MR, Khan NA. Moxifloxacin and sulfamethoxazole-based nanocarriers exhibit potent antibacterial activities. Antibiotics (Basel) 2021;10(8):964. doi: 10.3390/ antibiotics10080964
- Kisich KO, Gelperina S, Higgins MP, Wilson S, Shipulo E, Oganesyan E, Heifets L. Encapsulation of moxifloxacin within poly(butyl cyanoacrylate) nanoparticles enhances efficacy against intracellular Mycobacterium tuberculosis. Int J Pharm 2007;345:154–62. doi: 10.1016/j. ijpharm.2007.05.062
- Tshweu LL, Shemis MA, Abdelghany A, Gouda A, Pilcher LA, Sibuyi NR, Meyer M, Dube A, Balogun MO. Synthesis, physicochemical characterization, toxicity and efficacy of a PEG conjugate and a hybrid PEG conjugate nanoparticle formulation of the antibiotic moxifloxacin. RSC Adv 2020;10:19770–80. doi: 10.1039/C9RA10872F