Have a personal or library account? Click to login
Antioxidative, cytotoxic, and antibacterial properties of self-assembled glycine-histidine-based dipeptides with or without silver nanoparticles in bio-inspired film Cover

Antioxidative, cytotoxic, and antibacterial properties of self-assembled glycine-histidine-based dipeptides with or without silver nanoparticles in bio-inspired film

Open Access
|Jul 2022

References

  1. Wang L, Gong C, Yuan X, Wei G. Controlling the self-assembly of biomolecules into functional nanomaterials through internal interactions and external stimulations: a review. Nanomaterials (Basel) 2019;9(2):285. doi: 10.3390/nano9020285
  2. Zou Q, Yan X. Amino acid coordinated self-assembly. Chemistry 2018;24:755–61. doi: 10.1002/chem.201704032
  3. Hamley I. Self-assembly of amphiphilic peptides. Soft Matter 2011;7:4122–38. doi: 10.1039/C0SM01218A
  4. Martin RB. Free energies and equilibria of peptide bond hydrolysis and formation. Biopolymers 1998;45:351–3. doi: 10.1002/(SICI)1097-0282(19980415)45:5<;351::AID-BIP3>3.0.CO;2-K
  5. Chan KH, Xue B, Robinson RC, Hauser CAE. Systematic moiety variations of ultrashort peptides produce profound effects on self-assembly, nanostructure formation, hydrogelation, and phase transition. Sci Rep 2017;7(1):12897. doi: 10.1038/s41598-017-12694-9
  6. Erdogan H, Babur E, Yilmaz M, Candas E, Gordesel M, Dede Y, Oren EE, Demirel GB, Ozturk MK, Yavuz MS, Demirel G. Morphological versatility in the self-assembly of Val-Ala and Ala-Val dipeptides. Langmuir 2015;31:7337–45. doi: 10.1021/acs.langmuir.5b01406
  7. Erdoğan H. Cation-based approach to morphological diversity of diphenylalanine dipeptide structures. Soft Matter 2021;17:5221–30. doi: 10.1039/D1SM00083G
  8. Qin S-Y, Pei Y, Liy X-J, Zhuo R-X, Zhang X-Z. Hierarchical self-assembly of a β-amyloid peptide derivative. J Mater Chem B 2013;1:668–75. doi: 10.1039/C2TB00105E
  9. Chen L, Morris K, Laybourn A, Elias D, Hicks MR, Rodger A, Serpell L, Adams DJ. Self-assembly mechanism for a naphthalene-dipeptide leading to hydrogelation. Langmuir 2010;26:5232–42. doi: 10.1021/la903694a
  10. Erdogan H, Sakalak H, Yavuz MS, Demirel G. Laser-triggered degelation control of gold nanoparticle embedded peptide organogels. Langmuir 2013;29:6975–82. doi: 10.1021/la401300u
  11. Sarmadi BH, Ismail A. Antioxidative peptides from food proteins: a review. Peptides 2010;31:1949–56. doi: 10.1016/j.peptides.2010.06.020
  12. Zheng L, Zhao Y, Dong H, Su G, Zhao M. Structure-activity relationship of antioxidant dipeptides: Dominant role of Tyr, Trp, Cys and Met residues. J Funct Foods 2016;21:485–96. doi: 10.1016/j.jff.2015.12.003
  13. Ambigaipalan P, Shahidi F. Antioxidant potential of date (Phoenix dactylifera L.) seed protein hydrolysates and carnosine in food and biological systems. J Agric Food Chem 2015;63:864–71. doi: 10.1021/jf505327b
  14. Mukherjee M, Mahapatra A. Catalytic effect of silver nanoparticle on electron transfer reaction: Reduction of [Co(NH3)5Cl](NO3)2 by iron(II). Colloid Surface A 2009;350:1–7. doi: 10.1016/j.colsurfa.2009.08.021
  15. Bajaj M, Pandey SK, Nain T, Brar SK, Singh P, Singh S, Wangoo N, Sharma RK. Stabilized cationic dipeptide capped gold/silver nanohybrids: Towards enhanced antibacterial and antifungal efficacy. Colloid Surface B 2017;158:397–407. doi: 10.1016/j.colsurfb.2017.07.009
  16. Erdoğan H. Catalytic degradation of 4-Nitrophenol and methylene blue by bioinspired polydopamine coated dipeptide structures. Colloid Interface Sci Commun 2020;39:100331. doi: 10.1016/j.colcom.2020.100331
  17. Aisida SO, Ugwu K, Nwanya AC, Bashir A, Nwankwo NU, Ahmed I, Ezema FI. Biosynthesis of silver oxide nanoparticles using leave extract of Telfairia occidentalis and its antibacterial activity. Mater Today Proc 2021;36:208–13. doi: 10.1016/j.matpr.2020.03.005
  18. Hamouda T, Ibrahim HM, Kafafy HH, Mashaly HM, Mohamed NH, Aly NM. Preparation of cellulose-based wipes treated with antimicrobial and antiviral silver nanoparticles as novel effective high-performance coronavirus fighter. Int J Biol Macromol 2021;181:990– 1002. doi: 10.1016/j.ijbiomac.2021.04.071
  19. Mba IE, Nweze EI. Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects. World J Microbiol Biotechnol 2021;37(6):108. doi: 10.1007/s11274-021-03070-x
  20. Mohler JS, Sim W, Blaskovich MAT, Cooper MA, Ziora ZM. Silver bullets: A new lustre on an old antimicrobial agent. Biotechnol Adv 2018;36:1391–411. doi: 10.1016/j.biotechadv.2018.05.004
  21. Tung Y-T, Wu J-H, Hsieh C-Y, Chen P-S, Chang S-T. Free radical-scavenging phytochemicals of hot water extracts of Acacia confusa leaves detected by an on-line screening method. Food Chem 2009;115:1019–24. doi: 10.1016/j.foodchem.2009.01.026
  22. Bacanli M, Esim MO, Erdogan H, Sarper M, Erdem O, Ozkan Y. Evaluation of cytotoxic and genotoxic effects of paclitaxel-loaded PLGA nanoparticles in neuroblastoma cells. Food Chem Toxicol 2021;154:112323. doi: 10.1016/j.fct.2021.112323
  23. European Committee on Animicrobial Susceptibility Testing EUCAST. Breakpoint tables for interpretation of MICs and zone diameters. Version 12.0, 2022 [displayed 9 June 2022]. Available at https://www.eucast.org/clinical_breakpoints/
  24. To T, Sakamoto Y, Sadakane K, Matsugami M, Takamuku T. Aggregation of the dipeptide leu-gly in alcohol-water binary solvents elucidated from the solvation structure for each moiety. J Phys Chem B 2021;125:240–52. doi: 10.1021/acs.jpcb.0c08809
  25. Ji W, Yuan C, Chakraborty P, Gilead S, Yan X, Gazit E. Stoichiometry-controlled secondary structure transition of amyloid-derived supramolecular dipeptide co-assemblies. Commun Chem 2019;2(1):65. doi: 10.1038/s42004-019-0170-z
  26. Ji W, Yuan C, Zilberzwige-Tal S, Xing R, Chakraborty P, Tao K, Gilead S, Yan X, Gazit E. Metal-ion modulated structural transformation of amyloid-like dipeptide supramolecular self-assembly. ACS Nano 2019;13:7300–9. doi: 10.1021/acsnano.9b03444
  27. Adebayo-Tayo B, Salaam A, Ajibade A. Green synthesis of silver nanoparticle using Oscillatoria sp. extract, its antibacterial, antibiofilm potential and cytotoxicity activity. Heliyon 2019;5(10):e02502. doi: 10.1016/j.heliyon.2019.e02502
  28. Case DR, Zubieta J, Gonzalez R, Doyle RP. Synthesis and chemical and biological evaluation of a glycine tripeptide chelate of magnesium. Molecules 2021;26(9):2419. doi: 10.3390/molecules26092419
  29. Elshafie HS, Sakr SH, Sadeek SA, Camele I. Biological investigations and spectroscopic studies of new moxifloxacin/glycine-metal complexes. Chem Biodivers 2019;16(3):e1800633. doi: 10.1002/cbdv.201800633
  30. Maia MT, Sena DN, Calais GB, Luna FMT, Beppu MM, Vieira RS. Effects of histidine modification of chitosan microparticles on metal ion adsorption. React Funct Polym 2020;154:104694. doi: 10.1016/j.reactfunctpolym.2020.104694
  31. Riguero V, Clifford R, Dawley M, Dickson M, Gastfriend B, Thompson C, Wang SC, O’Connor E. Immobilized metal affinity chromatography optimization for poly-histidine tagged proteins. J Chromatogr A 2020;1629:461505. doi: 10.1016/j.chroma.2020.461505
  32. Hartman PE, Hartman Z, Ault KT. Scavenging of singlet molecular oxygen by imidazole compounds: high and sustained activities of carboxy terminal histidine dipeptides and exceptional activity of imidazole-4-acetic acid. Photochem Photobiol 1990;51:59–66. doi: 10.1111/j.1751-1097.1990.tb01684.x
  33. Babu PJ, Doble M, Raichur AM. Silver oxide nanoparticles embedded silk fibroin spuns: Microwave mediated preparation, characterization and their synergistic wound healing and anti-bacterial activity. J Colloid Interface Sci 2018;513:62–71. doi: 10.1016/j.jcis.2017.11.001
  34. Ahn EY, Jin H, Park Y. Assessing the antioxidant, cytotoxic, apoptotic and wound healing properties of silver nanoparticles green-synthesized by plant extracts. Mater Sci Engin C 2019;101:204–16. doi: 10.1016/j.msec.2019.03.095
  35. Zhao X, Zhou L, Riaz Rajoka MS, Yan L, Jiang C, Shao D, Zhu J, Shi J, Huang Q, Yang H, Jin M. Fungal silver nanoparticles: synthesis, application and challenges. Crit Rev Biotechnol 2018;38:817–35. doi: 10.1080/07388551.2017.1414141
  36. Demirbas A, Welt BA, Ocsoy I. Biosynthesis of red cabbage extract directed Ag NPs and their effect on the loss of antioxidant activity. Mater Lett 2016;179:20–3. doi: 10.1016/j.matlet.2016.05.056
  37. Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small 2008;4:26–49. doi: 10.1002/smll.200700595
  38. El Sayed MT, El-Sayed ASA. Biocidal activity of metal nanoparticles synthesized by Fusarium solani against multidrug-resistant bacteria and mycotoxigenic fungi. J Microbiol Biotechnol 2020;30:226–36. doi: 10.4014/jmb.1906.06070
  39. Hamouda RA, Hussein MH, Abo-Elmagd RA, Bawazir SS. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci Rep 2019;9(1):13071. doi: 10.1038/s41598-019-49444-y
  40. Hossain MM, Polash SA, Takikawa M, Shubhra RD, Saha T, Islam Z, Hossain S, Hasan MA, Takeoka S, Sarker SR. Investigation of the antibacterial activity and in vivo cytotoxicity of biogenic silver nanoparticles as potent therapeutics. Front Bioeng Biotechnol 2019;7:239. doi: 10.3389/fbioe.2019.00239
  41. Hu X, Saravanakumar K, Jin T, Wang MH. Mycosynthesis, characterization, anticancer and antibacterial activity of silver nanoparticles from endophytic fungus Talaromyces purpureogenus. Int J Nanomedicine 2019;14:3427–38. doi: 10.2147/IJN.S200817
  42. Huq MA. Green synthesis of silver nanoparticles using Pseudoduganella eburnea MAHUQ-39 and their antimicrobial mechanisms investigation against drug resistant human pathogens. Int J Mol Sci 2020;21(4):1510. doi: 10.3390/ijms21041510
DOI: https://doi.org/10.2478/aiht-2022-73-3658 | Journal eISSN: 1848-6312 | Journal ISSN: 0004-1254
Language: English, Croatian, Slovenian
Page range: 169 - 177
Submitted on: Apr 1, 2022
Accepted on: Jun 1, 2022
Published on: Jul 7, 2022
Published by: Institute for Medical Research and Occupational Health
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Merve Eylul Kiymaci, Hakan Erdoğan, Merve Bacanlı, published by Institute for Medical Research and Occupational Health
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.