Have a personal or library account? Click to login
Ozone disinfection efficiency against airborne microorganisms in hospital environment: a case study Cover

Ozone disinfection efficiency against airborne microorganisms in hospital environment: a case study

Open Access
|Dec 2022

References

  1. Scott E, Bloomfield SF. The survival and transfer of microbial contamination via cloths, hands and utensils. J Appl Bacteriol 1990;68:271–8. doi: 10.1111/j.1365-2672.1990.tb02574.x
  2. Costa DM, Johani K, Melo DS, Lopes LKO, Lopes Lima LKO, Tipple AFV, Hu H, Vickery K. Biofilm contamination of high-touched surfaces in intensive care units: epidemiology and potential impacts. Lett Appl Microbiol 2019;68:269–76. doi: 10.1111/lam.13127
  3. Davies A, Pottage T, Bennett A, Walker J. Gaseous and air decontamination technologies for Clostridium difficile in the healthcare environment. J Hosp Infect 2011;77:199–203. doi: 10.1016/j. jhin.2010.08.012
  4. Marra AR, Schweizer ML, Edmond MB. No-touch disinfection methods to decrease multidrug-resistant organism infections: A systematic review and meta-analysis. Infect Control Hosp Epidemiol 2018;39:20–31. doi: 10.1017/ice.2017.226
  5. Boyce JM. Environmental contamination makes an important contribution to hospital infection. J Hosp Infect 2007;65(Suppl 2):50–4. doi: 10.1016/S0195-6701(07)60015-2
  6. Fernstrom A, Goldblatt M. Aerobiology and its role in the transmission of infectious diseases. J Pathog 2013;2013:493960. doi: 10.1155/2013/493960
  7. Jones RM, Brosseau LM. Aerosol transmission of infectious disease. J O cc up E nv iron Me d 2 0 1 5 ; 5 7 : 5 0 1 – 8 . do i : 1 0 . 1 0 9 7 / JOM.0000000000000448
  8. Smith K, Hunter IS. Efficacy of common hospital biocides with biofilms of multi-drug resistant clinical isolates. J Med Microbiol 2008;57:966–73. doi: 10.1099/jmm.0.47668-0
  9. Passaretti CL, Otter JA, Reich NG, Myers J, Shepard J, Ross T, Carroll KC, Lipsett P, Perl TM. An evaluation of environmental decontamination with hydrogen peroxide vapor for reducing the risk of patient acquisition of multidrug-resistant organisms. Clin Infect Dis 2013;56:27–35. doi: 10.1093/cid/cis839
  10. Boyce JM. Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals. Antimicrob Resist Infect Control 2016;5:1–10. doi: 10.1186/s13756-016-0111-x
  11. Talon D. The role of the hospital environment in the epidemiology of multi-resistant bacteria. J Hosp Infect 1999;43:13–7. doi: 10.1053/ jhin.1999.0613
  12. Mody L, Washer LL, Kaye KS, Gibson K, Saint S, Reyes K, Cassone M, Mantey J, Cao J, Altamimi S, Perri M, Sax H, Chopra V, Zervos M. Multidrug-resistant organisms in hospitals: what is on patient hands and in their rooms? Clin Infect Dis 2019;69:1837–44. doi: 10.1093/cid/ ciz092
  13. Pendleton JN, Gorman SP, Gilmore BF. Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther 2013;11:297–308. doi: 10.1586/eri.13.12
  14. Almatroudi A, Gosbell IB, Hu H, Jensen SO, Espedido BA, Tahir S, Glasbey TO, Legge P, Whiteley G, Deva A, Vickery K. Staphylococcus aureus dry-surface biofilms are not killed by sodium hypochlorite: implications for infection control. J Hosp Infect 2016;93:263–70. doi: 10.1016/j.jhin.2016.03.020
  15. Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F. Biofouling : The Journal of Bioadhesion and Biofilm Resistance of bacterial biofilms to disinfectants : a review. Biofouling J Bioadhesion Biofilm Res 2011;27:1017–32. doi: 10.1080/08927014.2011.626899
  16. Russell AD. Bacterial resistance to disinfectants: present knowledge and future problems. J Hosp Infect 1999;43(Suppl 1):S57–68. doi: 10.1016/ s0195-6701(99)90066-x
  17. Weber DJ, Kanamori H, Rutala WA. “No touch” technologies for environmental decontamination: focus on ultraviolet devices and hydrogen peroxide systems. Curr Opin Infect Dis 2016;29:424–31. doi: 10.1097/QCO.0000000000000284
  18. Giuliani G, Ricevuti G, Galoforo A, Franzini M. Microbiological aspects of ozone: bactericidal activity and antibiotic/antimicrobial resistance in bacterial strains treated with ozone. Ozone Ther 2018;3(3):7971. doi: 10.4081/ozone.2018.7971
  19. Li CS, Wang YC. Surface germicidal effects of ozone for microorganisms. Am Ind Hyg Assoc J 2003;64:533–7. doi: 10.1202/559.1
  20. Cardoso ACC, Fiorini JE, Ferriera LR, Gurjao JW, Amaral LA. Disinfection of hospital laundry using ozone : microbiological evaluation. Infect Control Hosp Epidemiol 2011;21:248. doi: 10.1086/503216
  21. de Boer HEL, van Elzelingen-Dekker CM, van Rheenen-Verberg CMF, Spanjaard L. Use of gaseous ozone for eradication of methicillin-resistant Staphylococcus aureus from the home environment of a colonized hospital employee. Infect Control Hosp Epidemiol 2006;27:1120–2. doi: 10.1086/507966
  22. Franke G, Knobling B, Brill FH, Becker B, Klupp EM, Belmar Campos C, Pfefferle S, Lütgehetmann M, Knobloch JK. An automated room disinfection system using ozone is highly active against surrogates for SARS-CoV-2. J Hosp Infect 2021;112:108–13. doi: 10.1016/j. jhin.2021.04.007
  23. Epelle EI, Macfarlane A, Cusack M, Burns A, Thissera B, Mackay W, Rateb ME, Yaseen M. Bacterial and fungal disinfection via ozonation in air. J Microbiol Methods 2022;194:106431. doi: 10.1016/j. mimet.2022.106431
  24. Otter JA, Yezli S, Perl TM, Barbut F, French GL. The role of “no-touch” automated room disinfection systems in infection prevention and control. J Hosp Infect 2013;83:1–13. doi: 10.1016/j.jhin.2012.10.002
  25. Moccia G, De Caro F, Pironti C, Boccia G, Capunzo M, Borrelli A, Motta O. Development and improvement of an effective method for air and surfaces disinfection with ozone gas as a decontaminating agent. Medicina (Kaunas) 2020;56(11):578. doi: 10.3390/medicina56110578
  26. Franco-Duarte R, Černáková L, Kadam S, Kaushik KS, Salehi B, Bevilacqua A, Corbo MR, Antolak H, Dybka-Stępień K, Leszczewicz M, Relison Tintino S, Alexandrino de Souza VC, Sharifi-Rad J, Coutinho HDM, Martins N, Rodrigues CF. Advances in chemical and biological methods to identify microorganisms - from past to present. Microorganisms 2019;7(5):130. doi: 10.3390/microorganisms7050130
  27. Giuliano C, Patel CR, Kale-Pradhan PB. A guide to bacterial culture identification and results interpretation. Pharm Ther 2019;44:192–200. PMCID: PMC6428495
  28. MAS MERCK. Operating Manual MAS-100™ with data-port MAS-100 [displayed 5 December 2022]. Available at https://archive-resources.coleparmer.com/Manual_pdfs/39182-90,-82.pdf
  29. Basińska M, Michałkiewicz M, Ratajczak K. Impact of physical and microbiological parameters on proper indoor air quality in nursery. Environ Int 2019;132:105098. doi: 10.1016/j.envint.2019.105098
  30. Cabo Verde S, Almeida SM, Matos J, Guerreiro D, Meneses M, Faria T, Botelho D, Santos M, Viegas C. Microbiological assessment of indoor air quality at different hospital sites. Res Microbiol 2015;166:557–63. doi: 10.1016/j.resmic.2015.03.004
  31. Kunwar A, Tamrakar S, Poudel S, Sharma S, Parajuli P. Bacteriological assessment of the indoor air of different hospitals of Kathmandu district. Int J Microbiol 2019;2019:5320807. doi: 10.1155/2019/5320807
  32. Ling S, Hui L. Evaluation of the complexity of indoor air in hospital wards based on PM2.5, real-time PCR, adenosine triphosphate bioluminescence assay, microbial culture and mass spectrometry. BMC Infect Dis 2019;19(1):646. doi: 10.1186/s12879-019-4249-z
  33. Ziaee A, Zia M, Bayat M, Hashemi J. Molecular identification of Mucor and Lichtheimia species in pure cultures of Zygomycetes. Jundishapur J Microbiol 2016;9(4):e35237. doi: 10.5812/jjm.35237
  34. Belizario JA, Lopes LG, Pires RH. Fungi in the indoor air of critical hospital areas: a review. Aerobiologia (Bologna) 2021;37:379–94. doi: 10.1007/s10453-021-09706-7
  35. Blanco A, de Borja Ojembarrena F, Clavo B, Negro C. Ozone potential to fight against SAR-COV-2 pandemic: facts and research needs. Environ Sci Pollut Res 2021;28:16517–31. doi: 10.1007/s11356-020-12036-9
  36. Ito K. Experimental and CFD analyses examining ozone distribution in model rooms with laminar and turbulent flow fields. J Asian Archit Build Eng 2007;6:387–94. doi: 10.3130/jaabe.6.387
  37. Aydogan A, Gurol MD. Application of gaseous ozone for inactivation of Bacillus subtilis spores. J Air Waste Manag Assoc 2006;56:179–85. doi: 10.1080/10473289.2006.10464443
  38. Wood JP, Wendling M, Richter W, Rogers J. The use of ozone gas for the inactivation of Bacillus anthracis and Bacillus subtilis spores on building materials. PLoS One 2020;15(5):e0233291. doi: 10.1371/journal. pone.0233291
  39. Ishizaki K, Shinriki N, Matsuyama H. Inactivation of Bacillus spores by gaseous ozone. J Appl Bacteriol 1986;60:67–72. doi: 10.1111/j.1365-2672.1986.tb01067.x
  40. Moore G, Griffith C, Peters A. Bactericidal properties of ozone and its potential application as a terminal disinfectant. J Food Prot 2000;63:1100–6. doi: 10.4315/0362-028x-63.8.1100
  41. Piletić K, Kovač B, Perčić M, Žigon J, Broznić D, Karleuša L, Lučić Blagojević S, Oder M, Gobin I. Disinfecting action of gaseous ozone on OXA-48-producing Klebsiella pneumoniae biofilm in vitro. Int J Environ Res Public Health 2022;19(10):6177. doi: 10.3390/ijerph19106177
  42. Pravilnik o zaštiti radnika od izloženosti opasnim kemikalijama na radu, graničnim vrijednostima izloženosti i biološkim graničnim vrijednostima [Ordinance on the protection of workers of exposure to dangerous chemicals at work, exposure limit values and biological limit values, in Croatian]. Narodne novine 91/2018.
  43. Moat J, Cargill J, Shone J, Upton M. Application of a novel decontamination process using gaseous ozone. Can J Microbiol 2009;55:928–33. doi: 10.1139/w09-046
DOI: https://doi.org/10.2478/aiht-2022-73-3651 | Journal eISSN: 1848-6312 | Journal ISSN: 0004-1254
Language: English, Croatian, Slovenian
Page range: 270 - 276
Submitted on: Apr 1, 2022
Accepted on: Dec 1, 2022
Published on: Dec 30, 2022
Published by: Institute for Medical Research and Occupational Health
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Kaća Piletić, Dijana Tomić Linšak, Bruno Kovač, Silvestar Mežnarić, Marin Repustić, Martina Radmanović-Skrbić, Ivana Gobin, published by Institute for Medical Research and Occupational Health
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.