Have a personal or library account? Click to login
Telomere fragility in radiology workers occupationally exposed to low doses of ionising radiation Cover

Telomere fragility in radiology workers occupationally exposed to low doses of ionising radiation

Open Access
|Apr 2022

References

  1. Pernot E, Hall J, Baatout S, Benotmane MA, Blanchardon E, Bouffler S, Saghire H El, Gomolka M, Guertler A, Harms-Ringdahl M, Jeggo P, Kreuzer M, Laurier D, Lindholm C, Mkacher R, Quintens R, Rothkamm K, Sabatier L, Tapio S, de Vathaire F, Cardis E. Ionizing radiation biomarkers for potential use in epidemiological studies. Mutat Res 2012;751:258–86. doi: 10.1016/j.mrrev.2012.05.003
  2. Clemence B, Bernier MO, Klokov D, Andreassi MG. Biomarkers of genotoxicity in medical workers exposed to low-dose ionizing radiation: systematic review and meta-analyses. Int J Mol Sci 2021;22:7504. doi: 10.3390/ijms22147504
  3. Cubby E, Newton C, Joksić G, Woodbine L, Koller B, Jeggo PA, Slijepčević P. Accelerated telomere shortening in radiosensitive cell lines. Radiat Res 2005;164:53–62. doi: 10.1667/rr3376
  4. Ayouaz A, Raynaud C, Heride C, Revaud D, Sabatier L. Telomeres: hallmarks of radiosensitivity. Biochimie 2008;90:60–72. doi: 10.1016/j.biochi.2007.09.011
  5. Vaiserman A, Krasnienkov D. Telomere length as a marker of biological age: state-of-the-art, open issues, and future perspectives. Front Genet 2021;11:630186. doi: 10.3389/fgene.2020.630186
  6. Mayer SE, Prather AA, Puterman E, Lin J, Arenander J, Coccia M, Shields GS, George M, Slavich GM, Epel ES. Cumulative lifetime stress exposure and leukocyte telomere length attrition: The unique role of stressor duration and exposure timing. Psychoneuroendocrinology 2019;104:210–8. doi: 10.1016/j.psyneuen.2019.03.002
  7. Bellon M, Nicot C. Telomere dynamics in immune senescence and exhaustion triggered by chronic viral infection. Viruses 2017;9:289. doi: 10.3390/v9100289
  8. Noppert GA, Feinstein L, Dowd Jennifer B, Stebbins RC, Zang E, Needham BL, Meier HCS, Simanek A, Aiello AE. Pathogen burden and leukocyte telomere length in the United States. Immun Ageing 2020;17:36. doi: 10.1186/s12979-020-00206-9
  9. Barnes RP, de Rosa M, Thosar SA, Detwiler AC, Roginskaya V, Van Houten B, Bruchez MP, Stewart-Ornstein J, Opresko PL. Telomeric 8-oxoguanine drives rapid premature senescence in the absence of telomere shortening. bioRxiv 2021;2021:442662. doi: 10.1101/2021.05.05.442662
  10. United Nations, Scientific Committee on the effects of Atomic Radiation. Sources and Effects of Ionizing Radiation. UNSCEAR 2008 Report of the General Assembly with Scientific Annexes. New York (NY): United Nations; 2010.
  11. Zakon o zdravstvenoj zaštiti [Law on health care, in Serbian]. Službeni glasnik RS 25/2019.
  12. International Atomic Energy Agency (IAEA). Biological Dosimetry: Chromosomal Aberration Analysis for Dose Assessment. Technical Reports Series No. 260. Vienna: IAEA; 1986.
  13. International Atomic Energy Agency (IAEA). Cytogenetic Analysis for Radiation Dose Assessment. Technical Reports Series No. 405. Vienna: IAEA; 2001.
  14. Lin J, Smith DL, Esteves K, Drury S. Telomere length measurement by qPCR - Summary of critical factors and recommendations for assay design. Psychoneuroendocrinology 2019;99:271–8. doi: 10.1016/j.psyneuen.2018.10.005
  15. Aubert G, Hills M, Lansdorp PM. Telomere length measurement caveats and critical assessment of the available technologies and tools. Mutat Res 2012;730:59–67. doi: 10.1016/j.mrfmmm.2011.04.003
  16. Joksic G, Joksic I, Filipović J, Liehr T. Telomere length measurement by FISH. In: Liehr T, editor. Fluorescence in situ hybridization (FISH): application guide. Berlin, Heidelberg: Springer; 2017. p. 147–52.
  17. Perner S, Brüderlein S, Hasel C, Waibel I, Holdenried A, Ciloglu N, Chopurian H, Vang Nielsen K, Plesch A, Högel J, Möller P. Quantifying telomere lengths of human individual chromosome arms by centromere calibrated fluorescence in situ hybridization and digital imaging. Am J Pathol 2003;163:1751–6. doi: 10.1016/S0002-9440(10)63534-1
  18. Alamdari DH, Paletas K, Pegiou T, Sarigianni M, Befani C, Koliakos G. A novel assay for the evaluation of the prooxidant-antioxidant balance, before and after antioxidant vitamin administration in type II diabetes patients. Clin Biochem 2007;40:248–54. doi: 10.1016/j.clinbiochem.2006.10.017
  19. Haghdoost S, Czene S, Näslund I, Skog S, Harms-Ringdahl M. Extracellular 8-oxo-dG as a sensitive parameter for oxidative stress in vivo and in vitro. Free Radic Res 2005;39:153–62. doi: 10.1080/10715760500043132
  20. Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal Biochem 2017;524:13–30. doi: 10.1016/j.ab.2016.10.021
  21. Natarajan AT, Boei JJ. Formation of chromosome aberrations: insights from FISH. Mutat Res 2003;544:299–304. doi: 10.1016/j.mrrev.2003.09.005
  22. Tucker JD. Low-dose ionizing radiation and chromosome translocations: A review of the major consideration for human biological dosimetry. Mutat Res 2008;659:211–20. doi: 10.1016/j.mrrev.2008.04.001
  23. Milačić S. Frequency of chromosomal lesions and damaged lymphocytes of workers occupationally exposed to x-rays. Health Phys 2005;88:334–9. doi: 10.1097/01.hp.0000149920.09402.1d
  24. Jovicic D, Milacic S, Milic N, Bukvic N, Vukov TD. Chromosomal aberrations in subjects exposed to ionizing radiation. J Environ Pathol Toxicol Oncol 2009;28:75–82. doi: 10.1615/JEnvironPatholToxicolOncol.v28.i1.80
  25. Zakeri F, Hirobe T. A cytogenetic approach to the effects of low levels of ionizing radiations on occupationally exposed individuals. Eur J Radiol 2010;73:191–5. doi: 10.1016/j.ejrad.2008.10.015
  26. Lin C-C, Wu LS-H, Lee K-F. The potential effect of different doses of ionizing radiation on genes and disease. Dose-Response 2019;17:1559325819843375. doi: 10.1177/1559325819843375
  27. Il’yasova D, Kinev A, Melton CD, Davis GF. Donor-specific cell-based assays in studying sensitivity to low-dose radiation: a population-based perspective. Front Public Health 2014;2:244. doi: 10.3389/fpubh.2014.00244
  28. Kato TA, Wilson PF, Nagasaw H, Peng Y, Weil MM, Little JB, Bedford JS. Variations in radiosensitivity among individuals: a potential impact on risk assessment? Health Phys 2009;97:470–80. doi: 10.1097/HP.0b013e3181b08eee
  29. Wilson PF, Nham PB, Urbin SS, Hinz JM, Jones IM, Thompson LH. Inter-individual variation in DNA double-strand break repair in human fibroblasts before and after exposure to low doses of ionizing radiation. Mutat Res 2010;683:91–7. doi: 10.1016/j.mrfmmm.2009.10.013
  30. Piotrowski I, Dawid A, Kulcenty K, Suchorska WM. Use of biological dosimetry for monitoring medical workers occupationally exposed to ionizing radiation. Radiation 2021;1:95–115. doi: 10.3390/ radiation1020009
  31. Andreassi MG, Foffa I, Manfredi S, Botto N, Cioppa A, Picano E. Genetic polymorphisms in XRCC1, OGG1, APE1 and XRCC3 DNA repair genes, ionizing radiation exposure and chromosomal DNA damage in interventional cardiologists. Mutat Res 2009;666:57–63. doi: 10.1016/j.mrfmmm.2009.04.003
  32. Vellingiri B, Shanmugam S, Subramaniam MD, Balasubramanian B, Meyyazhagan A, Alagamuthu K, Prakash V, Shafiahammedkhan M, Kathannan S, Pappuswamy M, Raviganesh B, Anand S, Shahnaz ND, Cho SG, Keshavarao S. Cytogenetic endpoints and xenobiotic gene polymorphism in lymphocytes of hospital workers chronically exposed to ionizing radiation in cardiology, radiology and orthopedic laboratories. Ecotoxicol Environ Saf 2014;100:266–74. doi: 10.1016/j.ecoenv.2013.09.036
  33. Hou J, Wang F, Kong P, Yu PKN, Wang H, Han W. Gene profiling characteristics of radioadaptive response in AG01522 normal human fibroblasts. PLoS One 2015;10:e0123316. doi: 10.1371/journal. pone.0123316
  34. Niazi Y, Thomsen H, Smolkova B, Vodickova L, Vodenkova S, Kroupa M, Vymetalkova V, Kazimirova A, Barancokova M, Volkovova K, Staruchova M, Hoffmann P, Nöthen MM, Dusinska M, Musak L, Vodicka P, Försti A, Hemminki K. DNA repair gene polymorphisms and chromosomal aberrations in healthy, nonsmoking population. DNA Repair 2021;101:103079. doi: 10.1016/j.dnarep.2021.103079
  35. Ebrahimian TG, Beugnies L, Surette J, Priest N, Gueguen Y, Gloaguen C, Benderitter M, Jourdain JR, Tack K. Chronic exposure to external low-dose gamma radiation induces an increase in anti-inflammatory and anti-oxidative parameters resulting in atherosclerotic plaque size reduction in ApoE-/- mice. Radiat Res 2018;189:187–96. doi: 10.1667/ RR14823.1
  36. Fučić A, Želježić D, Kašuba V, Kopjar N, Rozgaj R, Lasan R, Mijić A, Hitrec V, Lucas JN. Stable and unstable chromosome aberrations measured after occupational exposure to ionizing radiation and ultrasound. Croat Med J 2007;48:371–7. PMCID: PMC2080539
  37. Reste J, Zvigule G, Zvagule T, Kurjane N, Eglite M, Gabruseva N, Berzina D, Plonis J, Miklasevics E. Telomere length in Chernobyl accident recovery workers in the late period after the disaster. J Radiat Res 2014;55:1089–100. doi: 10.1093/jrr/rru060
  38. Movahedi A, Mostajaboddavati M, Rajabibazl M, Mirfakhraie R, Enferadi M. Association of telomere length with chronic exposure to ionizing radiation among inhabitants of natural high background radiation areas of Ramsar, Iran. Int J Radiat Biol 2019;95:1113–21. doi: 10.1080/09553002.2019.1605460
  39. Blackburn EH. Switching and signaling at the telomere. Cell 2001;106:661–73. doi: 10.1016/S0092-8674(01)00492-5
  40. Yang Z, Takai KK, Lovejoy CA, de Lange T. Break-induced replication promotes fragile telomere formation. Genes Dev 2020;34:1392–405. doi: 10.1101/gad.328575.119
  41. Flynn RL, Heaphy CM. Surviving telomere attrition with the MiDAS touch. Trends Genet 2019;35:783–5. doi: 10.1016/j.tig.2019.08.008
  42. Özer Ö, Hickson ID. Pathways for maintenance of telomeres and common fragile sites during DNA replication stress. Open Biol 2018;8(4):180018. doi: 10.1098/rsob.180018
  43. Hayflick L. Living forever and dying in the attempt. Exp Gerontol 2003;38:1231–41. doi: 10.1016/j.exger.2003.09.003
  44. Bolzan AD. Using telomeric chromosomal aberration to evaluate clastogen-induced genomic instability in mammalian cells. Chromose Res 2020;28:259–76. doi: 10.1007//s10577-020-09641-2
  45. Luxton JJ, McKenna MJ, Lewis AM, Taylor LE, Jhavar SG, Swanson GP, Bailey SM. Telomere length dynamics and chromosomal instability for predicting individual radiosensitivity and risk via machine learning. J Pers Med 2021;11(3):188. doi: 10.3390/jpm11030188
  46. Ahmad IM, Temme JB, Abdalla MY, Zimmerman MC. Redox status in workers occupationally exposed to long-term low levels of ionizing radiation: A pilot study. Redox Rep 2016;21:139–45. doi: 10.1080/13510002.2015.1101891
  47. Chen B, Dai Q, Zhang Q, Yan P, Wang A, Qu L, JinY, Zhang D. The relationship among occupational irradiation, DNA methylation status and oxidative damage in interventional physicians. Medicine 2019;98:e17373. doi: 10.1097/MD.0000000000017373
  48. Kamiya H. Mutagenicity of oxidized DNA precursors in living cells: Roles of nucleotide pool sanitization and DNA repair enzymes, and translesion synthesis DNA polymerases. Mutat Res G Tox Env Mut 2010;703:32–6. doi: 10.1016/j.mrgentox.2010.06.003
  49. Fouquerel E, Barnes RP, Uttam S, Watkins SC, Bruchez MP, Opresko PL. Targeted and persistent 8-oxoguanine base damage at telomeres promotes telomere loss and crisis. Mol Cell 2019;75:117–30.e6. doi: 10.1016/j.molcel.2019.04.024
  50. El-Benhawy SA, Sadek NA, Behery AK, Issa NM, Ali OK. Chromosomal aberrations and oxidative DNA adduct 8-hydroxy-2-deoxyguanosine as biomarkers of radiotoxicity in radiation workers. J Radiat Res Appl Sci 2016;9:249–58. doi: 10.1016/j.jrras.2015.12.004
DOI: https://doi.org/10.2478/aiht-2022-73-3609 | Journal eISSN: 1848-6312 | Journal ISSN: 0004-1254
Language: English, Croatian, Slovenian
Page range: 23 - 30
Submitted on: Nov 1, 2021
Accepted on: Mar 1, 2022
Published on: Apr 7, 2022
Published by: Institute for Medical Research and Occupational Health
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Jelena Filipović Tričković, Ana Valenta Šobot, Ivana Joksić, Gordana Joksić, published by Institute for Medical Research and Occupational Health
This work is licensed under the Creative Commons Attribution 4.0 License.