References
- Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005;113:823–39. doi: 10.1289/ehp.7339
- Amoabediny G, Naderi A, Malakootikhah J, Koohi MK, Mortazavi SA, Naderi M, Rashedi H. Guidelines for safe handling, use and disposal of nanoparticles. J Phys Conf Ser 2009;170:012037–50. doi: 10.1088/1742-6596/170/1/012037
- Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, Hong Y. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 2008;233:404–10. doi: 10.1016/j. taap.2008.09.015
- Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, Wright CJ, Doak SH. NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 2009;30:3891–914. doi: biomaterials.2009.04.009
- Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Bio interphases 2007;2:MR17–71. doi: 10.1116/1.2815690
- Hassanpour P, Panahi Y, Ebrahimi-Kalan A, Akbarzadeh A, Davaran S, Nasibova AN, Khalilov R, Kavetskyy T. Biomedical applications of aluminium oxide nanoparticles. Micro Nano Lett 2018;13:1227–31. doi: 10.1049/mnl.2018.5070
- Ghaemi, N. A new approach to copper ion removal from water by polymeric nanocomposite membrane embedded with γ-alumina nanoparticles. Appl Surf Sci 2016;364:221–8. doi: 10.1016/j.apsusc.2015.12.109
- Zhao G, Wu X, Tan X, Wang X. Sorption of heavy metal ions from aqueous solutions: A review. Open Colloid Sci J 2010;4:19–31. doi: 10.2174/1876530001104010019
- Balasubramanyam A, Sailaja N, Mahboob M, Rahman MF, Hussain SM, Grover P. In vivo genotoxicity assessment of aluminium oxide nanomaterials in rat peripheral blood cells using the comet assay and micronucleus test. Mutagenesis 2009;24:245–51. doi: 10.1093/mutage/gep003
- Prabhakara P V, Reddya UA, Singha SP, Balasubramanyam A, Rahman MF, Indu Kumari S, Agawane SB, Murty US, Grover P, Mahboob M. Oxidative stress induced by aluminum oxide nanomaterials after acute oral treatment in Wistar rats. J Appl Toxicol 2012;32:436–45. doi: 10.1002/jat.1775
- Dey S, Bakthavatchalu V, Tseng MT, Wu P, Florence RL, Grulke EA, Yokel RA, Dhar SK, Yang HS, Chen Y, St Clair DK. Interactions between SIRT1 and AP-1 reveal a mechanistic insight into the growth promoting properties of alumina (Al2O3) nanoparticles in mouse skin epithelial cells. Carcinogenesis 2008;29:1920–9. doi: 10.1093/carcin/bgn175
- Oesterling E, Chopra N, Gavalas V, Arzuaga X, Lim EJ, Sultana R, Butterfield DA, Bachas L, Hennig B. Alumina nanoparticles induce expression of endothelial cell adhesion molecules. Toxicol Lett 2008;178:160–6. doi: 10.1016/j. toxlet.2008.03.011
- Chen L, Yokel RA, Hennig B, Toborek M. Manufactured aluminum oxide nanoparticles decrease expression of tight junction proteins in brain vasculature. J Neuroimmune Pharmacol 2008;3:286–95. doi: 10.1007/s11481-008-9131-5
- Rosenblum LT, Kosaka N, Mitsunaga M, Choyke PL, Kobayashi H. In vivo molecular imaging using nanomaterials: general in vivo characteristics of nano-sized reagents and applications for cancer diagnosis. Mol Membr Biol 2010;27:274–85. doi: 10.3109/09687688.2010.481640
- Peng XH, Qian X, Mao H, Wang AY, Chen ZG, Nie S, Shin DM. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomedicine 2008;3:311–21. doi: 10.2147/ijn. s2824
- Thorek DL, Chen AK, Czupryna J, Tsourkas A. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 2006;34:23–38. doi: 10.1007/s10439-005-9002-7
- Cherukuri P, Glazer ES, Curley SA. Targeted hyperthermia using metal nanoparticles. Adv Drug Deliv Rev 2010;62:339–45. doi: 10.1016/j.addr.2009.11.006
- Dhakshinamoorthy V, Manickam V, Perumal E. Neurobehavioural toxicity of iron oxide nanoparticles in mice. Neurotox Res 2017;32:187–203. doi: 10.1007/s12640-017-9721-1
- Sundarraj K, Raghunath A, Panneerselvam L, Perumal E. Iron oxide nanoparticles modulate heat shock proteins and organ specific markers expression in mice male accessory organs. Toxicol Appl Pharmacol 2017;317:12–24. doi: 10.1016/j.taap.2017.01.002
- Ansari MO, Parveen N, Ahmad MF, Wani AL, Afrin S, Rahman Y, Jameel S, Khan YA, Siddique HR, Tabish M, Shadab GGHA. Evaluation of DNA interaction, genotoxicity and oxidative stress induced by iron oxide nanoparticles both in vitro and in vivo: attenuation by thymoquinone. Sci Rep 2019;9:6912–26. doi: 10.1038/s41598-019-43188-5
- Liu G, Li X, Qin B, Xing D, Guo Y, Fan R. Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface. Tribol Lett 2004;17:961–6. doi: 10.1007/S11249-004-8109-6
- Palza H. Antimicrobial polymers with metal nanoparticles. Int J Mol Sci 2015;16:2099–116. doi: 10.3390/ijms16012099
- Colomban P. The use of metal nanoparticles to produce yellow, red and iridescent colour, from Bronze Age to present times in lustre pottery and glass: solid state chemistry, spectroscopy and nanostructure. J Nano Res 2009;8:109–32. doi: 10.4028/www.scientific.net/JNanoR.8.109
- Polino G, Abbel R, Shanmugam S, Bex GJP, Hendriks R, Brunetti F, Di Carlo A, Andriessen R, Galagan Y. A benchmark study of commercially available copper nanoparticle inks for application in organic electronic devices. Org Electron 2016;34:130–8. doi: 10.1016/j. orgel.2016.04.021
- Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Rubilar O, Duran N, Rai M. In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 2014;115:13–7. doi: 10.1016/j.matlet.2013.10.011
- Ren G, Hu D, Cheng EW, Vargas-Reus MA, Reip P, Allaker RP. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 2009;33:587–90. doi: 10.1016/j.ijantimicag.2008.12.004
- Lei R, Wu C, Yang B, Ma H, Shi C, Wang Q, Wang Q, Yuan Y, Liao M. Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: A rapid in vivo screening method for nanotoxicity. Toxicol Appl Pharmacol 2008;232:292–301. doi: 10.1016/j. taap.2008.06.026
- Karlsson HL, Gustafsson J, Cronholm P, Möller L. Size-dependent toxicity of metal oxide particles: a comparison between nano- and micrometer size. Toxicol Lett 2009;188:112–8. doi: 10.1016/j.toxlet.2009.03.014
- Alarifi S, Ali D, Verma A, Alakhtani S, Ali BA. Cytotoxicity and genotoxicity of copper oxide nanoparticles in human skin keratinocytes cells. Int J Toxicol 2013;32:296–307. doi: 10.1177/1091581813487563
- Zhang CH, Wang Y, Sun QQ, Xia LL, Hu JJ, Cheng K, Wang X, Fu XX, Gu H. Copper nanoparticles show obvious in vitro and in vivo reproductive toxicity via ERK mediated signaling pathway in female mice. Int J Biol Sci 2018;14:1834–44. doi: 10.7150/ijbs.27640
- Sadiq R, Khan QM, Mobeen A, Hashmat AJ. In vitro toxicological assessment of iron oxide, aluminium oxide and copper nanoparticles in prokaryotic and eukaryotic cell types. Drug Chem Toxicol 2014;38:152–61. doi: 10.3109/01480545.2014.919584
- Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 2008;101:239–53. doi: 10.1093/toxsci/kfm240
- Al Shoyaib A, Archie, SR, Karamyan VT. Intraperitoneal route of drug administration: should it be used in experimental animal studies? Pharm Res 2020;37:12. doi: org/10.1007/s11095-019-2745-x
- Preston RJ, Dean BJ, Galloway S, Holden H, McFee AF, Shelby M. In vivo cytogenetic assays: Analysis of chromosome aberrations in bone marrow cells. Mutat Res 1987;189:157–65. doi: 10.1016/0165-1218(87)90021-8
- Pérez Martín JM, Fernández Freire P, Labrador V, Hazen MJ. Carbamazepine induces mitotic arrest in mammalian Vero cells. Mutat Res 2008;637:124–33. doi: 10.1016/j. mrfmmm.2007.07.014
- Patlolla AK, Patra PK, Flountan M, Tchounwou PB. Cytogenetic evaluation of functionalized single-walled carbon nanotube in mice bone marrow cells. Environ Toxicol 2016;31:1091–102. doi: 10.1002/tox.22118
- Schmid W. The micronucleus test. Mutat Res 1975;31:9–15. doi: 10.1016/0165-1161(75)90058-8
- Song MF, Li YS, Kasai H, Kawai K. Metal nanoparticle-induced micronuclei and oxidative DNA damage in mice. J Clin Biochem Nutr 2012;50:211–6. doi: 10.3164/jcbn.11-70
- Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 1988;175:184–91. doi: 10.1016/0014-4827(88)90265-0
- Li Y, Bhalli JA, Ding W, Yan J, Pearce MG, Sadiq R, Cunningham CK, Jones MY, Monroe WA, Howard PC, Zhou T, Chen T. Cytotoxicity and genotoxicity assessment of silver nanoparticles in mouse. Nanotoxicology 2014;8(Suppl 1):36–45. doi: 10.3109/17435390.2013.855827
- Collins AR. The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 2004;26:249–61. doi: 10.1385/MB:26:3:249
- Woodruff RS, Li Y, Yan J, Bishop M, Jones MY, Watanabe F, Biris AS, Rice P, Zhou T, Chen T. Genotoxicity evaluation of titanium dioxide nanoparticles using the Ames test and Comet assay. J Appl Toxicol 2012;32:934–43. doi: 10.1002/jat.2781
- Collins AR, Duthie SJ, Dobson VL. Direct enzymic detection of endogenous oxidative base damage in human lymphocyte DNA. Carcinogenesis 1993;14:1733–5. doi: 10.1093/carcin/14.9.1733
- Smith CC, O’Donovan MR, Martin EA. hOGG1 recognizes oxidative damage using the comet assay with greater specificity than FPG or ENDOIII. Mutagenesis 2006;21:185–90. doi: 10.1093/mutage/gel019
- Jalili P, Huet S, Lanceleur R, Jarry G, Le Hegarat L, Nesslany F, Hogeveen K, Fessard V. Genotoxicity of aluminum and aluminum oxide nanomaterials in rats following oral exposure. Nanomaterials (Basel) 2020;10:305–17. doi: 10.3390/nano10020305
- Akbaba GB, Türkez H. Investigation of the genotoxicity of aluminum oxide, β-tricalcium phosphate, and zinc oxide nanoparticles in vitro. Int J Toxicol 2018;37:216–22. doi: 10.1177/1091581818775709
- Guichard Y, Schmit J, Darne C, Gaté L, Goutet M, Rousset D, Rastoix O, Wrobel R, Witschger O, Martin A, Fierro V, Binet S. Cytotoxicity and genotoxicity of nanosized and microsized titanium dioxide and iron oxide particles in Syrian hamster embryo cells. Ann Occup Hyg 2012;56:631–64. doi: 10.1093/annhyg/mes006
- Adamcakova-Dodd A, Stebounova LV, O’Shaughnessy PT, Kim JS, Grassian VH, Thorne PS. Murine pulmonary responses after sub-chronic exposure to aluminum oxide-based nanowhiskers. Part Fibre Toxicol 2012;9:22. doi: 10.1186/1743-8977-9-22
- Liu Y, Xia Q, Liu Y, Zhang S, Cheng F, Zhong Z, Wang L, Li H, Xiao K. Genotoxicity assessment of magnetic iron oxide nanoparticles with different particle sizes and surface coatings. Nanotechnology 2014;25:425101. doi: 10.1088/0957-4484/25/42/425101
- Singh SP, Rahman MF, Murty US, Mahboob M, Grover P. Comparative study of genotoxicity and tissue distribution of nano and micron sized iron oxide in rats after acute oral treatment. Toxicol App Pharmacol 2013;266:56–66. doi: 10.1016/j.taap.2012.10.016
- Lee IC, Ko JW, Park SH, Shin NR, Shin IS, Moon C, Kim JH, Kim HC, Kim JC. Comparative toxicity and biodistribution assessments in rats following subchronic oral exposure to copper nanoparticles and microparticles. Part Fibre Toxicol 2016;13:56–71. doi: 10.1186/s12989-016-0169-x
- De Jong WH, De Rijk E, Bonetto A, Wohlleben W, Stone V, Brunelli A, Badetti E, Marcomini A, Gosens I, Cassee FR. Toxicity of copper oxide and basic copper carbonate nanoparticles after short-term oral exposure in rats. Nanotoxicology 2019;13:50–72. doi: 10.1080/17435390.2018.1530390
- Cholewińska E, Ognik K, Fotschki B, Zduńczyk Z, Juśkiewicz J. Comparison of the effect of dietary copper nanoparticles and one copper (II) salt on the copper biodistribution and gastrointestinal and hepatic morphology and function in a rat model. PloS One 2018;13:e0197083. doi: 10.1371/journal.pone.0197083
- Chen Z1, Meng H, Xing G, Chen C, Zhao Y, Jia G, Wang T, Yuan H, Ye C, Zhao F, Chai Z, Zhu C, Fang X, Ma B, Wan L. Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 2006;25:109–20. doi: 10.1016/j. toxlet.2005.10.003
- Chakraborty R, Basu T. Metallic copper nanoparticles induce apoptosis in a human skin melanoma A-375 cell line. Nanotechnology 2017;28:105101. doi: 10.1088/1361-6528/aa57b
- Schins RP, Knaapen AM. Genotoxicity of poorly soluble particles. Inhal Toxicol 2007;19(Suppl 1): 189–98. doi: 10.1080/08958370701496202
- Tucker JD, Preston RJ. Chromosome aberrations, micronuclei, aneuploidy, sister chromatid exchanges, and cancer risk assessment. Mutat Res 1996;365:147–59. doi: 10.1016/s0165-1110(96)90018-4
- Yu Q, Xiong X, Zhao L, Xu TT, Bi H, Fu R, Wang QH. Biodistribution and toxicity assessment of superparamagnetic iron oxide nanoparticles in vitro and in vivo. Curr Med Sci 2018;38:1096–102. doi: 10.1007/s11596-018-1989-8
- Canli E, Canli M. Effects of aluminum, copper, and titanium nanoparticles on some blood parameters in Wistar rats. Turk J Zool 2017;41:259–66. doi: 10.3906/zoo-1512-23
- M’rad I, Jeljeli M, Rihane N, Hilber P, Sakly M, Amara S. Aluminium oxide nanoparticles compromise spatial learning and memory performance in rats. EXCLI J 2018;17:200–10. doi: 10.17179/excli2017-1050
- Zhang Q, Ding Y, He K, Li H, Gao F, Moehling TJ, Wu X, Duncan J, Niu Q. Exposure to alumina nanoparticles in female mice during pregnancy induces neurodevelopmental toxicity in the offspring. Front Pharmacol 2018;9:253. doi: 10.3389/fphar.2018.00253
- Prabhu BM, Ali SF, Murdock RC, Hussain SM, Srivatsan M. Copper nanoparticles exert size and concentration dependent toxicity on somatosensory neurons of rat. Nanotoxicology 2010;4:150–60. doi: 10.3109/17435390903337693
- Yousef MI, Abuzreda AA, Kamel, MA. Cardiotoxicity and lung toxicity in male rats induced by long term exposure to iron oxide and silver nanoparticles. Exp Ther Med 2019;18:4329–39. doi: 10.3892/etm.2019.8108
- Yousef MI, Mutar TF, Kamel MA. Hepato-renal toxicity of oral sub-chronic exposure to aluminum oxide and/or zinc oxide nanoparticles in rats. Toxicol Rep 2019;6:336–46. doi: 10.1016/j.toxrep.2019.04.003
- Lee IC, Ko JW, Park SH, Lim JO, Shin IS, Moon C, Kim SH, Heo JD, Kim JC. Comparative toxicity and biodistribution of copper nanoparticles and cupric ions in rats. Int J Nanomedicine 2016;11:2883–900. doi: 10.2147/IJN. S106346
- Lai X, Zhao H, Zhang Y, Guo K, Xu Y, Chen S, Zhang J. Intranasal delivery of copper oxide nanoparticles induces pulmonary toxicity and fibrosis in C57BL/6 mice. Sci Rep 2018;8:4499. doi: 10.1038/s41598-018-22556-7
- Li H, Huang T, Wang Y, Pan B, Zhang L, Zhang Q, Niu Q. Toxicity of alumina nanoparticles to immune system in mice. Nanomedicine (Lond) 2020;15:927–46. doi: 10.2217/nnm-2020-0009
- Xu Y, Sherwood JA, Lackey KH, Qin Y, Bao Y. The responses of immune cells to iron oxide nanoparticles. J Appl Toxicol 2016;36:543–53. doi: 10.1002/jat.3282
- Triboulet S, Aude-Garcia C, Carrière M, Diemer H, Proamer F, Habert A, Chevallet M, Collin-Faure V, Strub JM, Hanau D, Van Dorsselaer A, Herlin-Boime N, Rabilloud T. Molecular responses of mouse macrophages to copper and copper oxide nanoparticles inferred from proteomic analyses. Mol Cell Proteomics 2013;12:3108–22. doi: 10.1074/mcp. M113.030742