References
- Lindstrom AB, Strynar MJ, Libelo EL. Polyfluorinated compounds: Past, present, and future. Environ Sci Technol 2011;45:7954–61. doi: 10.1021/es2011622
- Giesy JP, Kannan K. Perfluorochemical surfactants in the environment. Environ Sci Technol 2002;36:146A-52A. doi: 10.1021/es022253t
- Schecter A, Colacino J, Haffner D, Patel K, Opel M, Päpke O, Birnbaum L. Perfluorinated compounds, polychlorinated biphenyl, and organochlorine pesticide contamination in composite food samples from Dallas, Texas, USA. Environ Health Perspect 2010;118:796–802. doi: 10.1289/ehp.0901347
- Langer V, Dreyer A, Ebinghaus R. Polyfluorinated compounds in residential and nonresidential indoor air. Environ Sci Technol 2010;44:8075–81. doi: 10.1021/es102384z
- D’Eon JC, Mabury SA. Is indirect exposure a significant contributor to the burden of perfluorinated acids observed in humans? Environ Sci Technol 2011;45:7974–84. doi: 10.1021/es200171y
- Nicole W. PFOA and cancer in a highly exposed community: New findings from the C8 science panel. Environ Health Perspect 2013;121:A340. doi: 10.1289/ehp.121-A340
- Apelberg BJ, Witter FR, Herbstman JB, Calafat AM, Halden RU, Needham LL, Goldman LR. Cord serum concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in relation to weight and size at birth. Environ Health Perspect 2007;115:1670–6. doi: 10.1289/ehp.10334
- Tao L, Kannan K, Wong CM, Arcaro KF, Butenhoff JL. Perfluorinated compounds in human milk from Massachusetts, USA. Environ Sci Technol 2008;42:3096–101. doi: 10.1021/es702789k
- von Ehrenstein OS, Fenton SE, Kato K, Kuklenyik Z, Calafat AM, Hines EP. Polyfluoroalkyl chemicals in the serum and milk of breastfeeding women. Reprod Toxicol 2009;27:239–45. doi: 10.1016/j.reprotox.2009.03.001
- Llorca M, Farré M, Picó Y, Teijón ML, Alvarez JG, Barceló D. Infant exposure of perfluorinated compounds: levels in breast milk and commercial baby food. Environ Int 2010;36:584–92. doi: 10.1016/j.envint.2010.04.016
- Brantsæter AL, Whitworth KW, Ydersbond TA, Haug LS, Haugen M, Knutsen HK, Thomsen C, Meltzer HM, Becher G, Sabaredzovic A, Hoppin JA, Eggesbø M, Longnecker MP. Determinants of plasma concentrations of perfluoroalkyl substances in pregnant Norwegian women. Environ Int 2013;54:74–84. doi: 10.1016/j.envint.2012.12.014
- Russell MH, Waterland RL, Wong F. Calculation of chemical elimination half-life from blood with an ongoing exposure source: The example of perfluorooctanoic acid (PFOA). Chemosphere 2015;129:210–6. doi: 10.1016/j.chemosphere.2014.07.061
- Legler J, Hamers T, van E van der S de Bor M, Schoeters G, van der Ven L, Eggesbo M, Koppe J, Feinberg M, Trnovec T. The OBELIX project: early life exposure to endocrine disruptors and obesity. Am J Clin Nutr 2011;94:1933S–8S. doi: 10.3945/ajcn.110.001669
- Heindel JJ, Newbold R, Schug TT. Endocrine disruptors and obesity. Nat Rev Endocrinol 2015;11:653–61. doi: 10.1038/nrendo.2015.163
- Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol 2010;28:1057–68. doi: 10.1038/nbt.1685
- Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011;21:381–95. doi: 10.1038/cr.2011.22
- Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet 2006;15:R17–29. doi: 10.1093/hmg/ddl046
- Razin A, Riggs AD. DNA methylation and gene function. Science 1980;210:604–10. doi: 10.1126/science.6254144
- Robertson KD. DNA methylation and human disease. Nat Rev Genet 2005;6:597–610. doi: 10.1038/nrg1655
- Kass SU, Pruss D, Wolffe AP. How does DNA methylation repress transcription? Trends Genet 1997;13:444–9. doi: 10.1016/S0168-9525(97)01268-7
- Suvà ML, Riggi N, Bernstein BE. Epigenetic reprogramming in cancer. Science 2013;339:1567–70. doi: 10.1126/science.1230184
- Janesick AS, Shioda T, Blumberg B. Transgenerational inheritance of prenatal obesogen exposure. Mol Cell Endocrinol 2014;398:31–5. doi: 10.1016/j.mce.2014.09.002
- Guerrero-Preston R, Goldman LR, Brebi-Mieville P, Ili-Gangas C, LeBron C, Witter FR, Apelberg BJ, Hernández-Roystacher M, Jaffe A, Halden RU, Sidransky D. Global DNA hypomethylation is associated with in utero exposure to cotinine and perfluorinated alkyl compounds. Epigenetics 2010;5:539–46. doi: 10.4161/epi.5.6.12378
- Ma Y, Yang J, Wan Y, Peng Y, Ding S, Li Y, Xu B, Chen X, Xia W, Ke Y, Xu S. Low-level perfluorooctanoic acid enhances 3 T3-L1 preadipocyte differentiation via altering peroxisome proliferator activated receptor gamma expression and its promoter DNA methylation. J Anal Toxicol 2018;38:398–407. doi: 10.1002/jat.3549
- Wen Y, Mirji N, Irudayaraj J. Epigenetic toxicity of PFOA and GenX in HepG2 cells and their role in lipid metabolism. Toxicology in Vitro 2020;65:104797. doi: 10.1016/j.tiv.2020.104797
- Belsham DD, Cai F, Cui H, Smukler SR, Salapatek AM, Shkreta L. Generation of a phenotypic array of hypothalamic neuronal cell models to study complex neuroendocrine disorders. Endocrinology 2004;145:393–400. doi: 10.1210/en.2003-0946
- AAT Bioquest. IC50 calculator, version 1 [displayed 25 june 2021]. Available at https://www.aatbio.com/tools/ic50-calculator-v1
- Hagenaars A, Vergauwen L, Benoot D, Laukens K, Knapen D. Mechanistic toxicity study of perfluorooctanoic acid in zebrafish suggests mitochondrial dysfunction to play a key role in PFOA toxicity. Chemosphere 2013;91:844–56. doi: 10.1016/j.chemosphere.2013.01.056
- Peng S, Yan L, Zhang J, Wang Z, Tian M, Shen H. An integrated metabonomics and transcriptomics approach to understanding metabolic pathway disturbance induced by perfluorooctanoic acid. J Pharm Biomed Anal 2013;86:56–64. doi: 10.1016/j.jpba.2013.07.014
- Yan S, Zhang H, Zheng F, Sheng N, Guo X, Dai J. Perfluorooctanoic acid exposure for 28 days affects glucose homeostasis and induces insulin hypersensitivity in mice. Sci Rep 2015;5:11029. doi: 10.1038/srep11029
- Liu W, Irudayaraj J. Perfluorooctanoic acid (PFOA) exposure inhibits DNA methyltransferase activities and alters constitutive heterochromatin organization. Food Chem Toxicol 2020;141:111358. doi: 10.1016/j.fct.2020.111358
- Pierozan P, Jerneren F, Karlsson O. Perfluorooctanoic acid (PFOA) exposure promotes proliferation, migration and invasion potential in human breast epithelial cells. Arch Toxicol 2018;92:1729–39. doi: 10.1007/s00204-018-2181-4
- Mignard V, Lalier L, Paris F, Vallette FM. Bioactive lipids and the control of Bax pro-apoptotic activity. Cell Death Dis 2014;5:e1266. doi: 10.1038/cddis.2014.226
- Cregan SP, MacLaurin JG, Craig CG, Robertson GS, Nicholson DW, Park DS, Slack RS. Bax-dependent caspase-3 activation is a key determinant in p53-induced apoptosis in neurons. J Neurosci 1999;19:7860–9. doi: 10.1523/JNEUROSCI.19-18-07860.1999
- Jost CA, Marin MC, Kaelin Jr WG. p73 is a simian [correction of human] p53-related protein that can induce apoptosis. Nature 1997;389:191–4. doi: 10.1038/38298
- Stiewe T, Pützer BM. p73 in apoptosis. Apoptosis 2001;6:447–52. doi: 10.1023/a:1012433522902
- Warita K, Mitsuhashi T, Hoshi N, Ohta K, Suzuki S, Takeuchi Y, Miki T. A unique pattern of bisphenol A effects on nerve growth factor gene expression in embryonic mouse hypothalamic cell line N-44. Arh Hig Rada Toksikol 2014;65:293–9. doi: 10.2478/10004-1254-65-2014-2494
- Pagano M, Pepperkok R, Verde F, Ansorge W, Draetta G. Cyclin A is required at two points in the human cell cycle. EMBO J 1992;11:961–71. PMCID: PMC556537
- Ohtsubo M, Theodoras AM, Schumacher J, Roberts JM, Pagano M. Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Mol Cell Biol 1995;15:2612–24. doi: 10.1128/mcb.15.5.2612
- Brown NR, Lowe ED, Petri E, Skamnaki V, Antrobus R, Johnson L. Cyclin B and cyclin A confer different substrate recognition properties on CDK2. Cell Cycle 2007;6:1350–9. doi: 10.4161/cc.6.11.4278
- Buhrke T, Krüger E, Pevny S, Rößler M, Bitter K, Lampen A. Perfluorooctanoic acid (PFOA) affects distinct molecular signalling pathways in human primary hepatocytes. Toxicology 2015;333:53–62. doi: 10.1016/j.tox.2015.04.004
- Engeland K. Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death Differ 2018;25:114–32. doi: 10.1038/cdd.2017.172
- Chang BD, Watanabe K, Broude EV, Fang J, Poole JC, Kalinichenko TV, Roninson IB. Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression: Implications for carcinogenesis, senescence, and age-related diseases. Proc Natl Acad Sci USA 2000;97:4291–6. doi: 10.1073/pnas.97.8.4291
- Ferrandiz N, Caraballo JM, Garcia-Gutierrez L, Devgan V, Rodriguez-Paredes M, Lafita MC, Bretones G, Quintanilla A, Munoz-Alonso MJ, Blanco R, Reyes JC, Agell N, Delgado MD, Dotto GP, León J. p21 as a transcriptional co-repressor of S-phase and mitotic control genes. PLoS ONE 2012;7:e37759. doi: 10.1371/journal.pone.0037759
- Waga S, Hannon GJ, Beach D, Stillman B. The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 1994;369:574–8. doi: 10.1038/369574a0
- Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D. p21 is a universal inhibitor of cyclin kinases. Nature 1993;366:701–4. doi: 10.1038/366701a0
- Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993;75:805–16. doi: 10.1016/0092-8674(93)90499-G
- De Santi M, Galluzzi L, Lucarini S, Paoletti MF, Fraternale A, Duranti A, De Marco C, Fanelli M, Zaffaroni N, Brandi G, Magnani M. The indole-3-carbinol cyclic tetrameric derivative CTet inhibits cell proliferation via overexpression of p21/CDKN1A in both estrogen receptor-positive and triple-negative breast cancer cell lines. Breast Cancer Res 2011;13:R33. doi: 10.1186/bcr2855
- Kondo S, Barna BP, Kondo Y, Tanaka Y, Casey G, Liu J, Morimura T, Kaakaji R, Peterson JW, Werbel B, Barnett GH. WAF1/CIP1 increases the susceptibility of p53 nonfunctional malignant glioma cells to cisplatin-induced apoptosis. Oncogene 1996;13:1279–85. PMID: 8808702
- Kreis NN, Sommer K, Sanhaji M, Kramer A, Matthess Y, Kaufmann M, Strebhardt K, Yuan J. Long-term downregulation of Polo-like kinase 1 increases the cyclin-dependent kinase inhibitor p21WAF1/CIP1. Cell Cycle 2009;8:460–72. doi: 10.4161/cc.8.3.7651
- Hempstead BL. Dissecting the diverse actions of pro- and mature neurotrophins. Curr Alzheimer Res 2006;3:19–24. doi: 10.2174/156720506775697061
- Reichardt LF. Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 2006;29:1545–64. doi: 10.1098/rstb.2006.1894
- Davey F, Davies AM. TrkB signalling inhibits p75-mediated apoptosis induced by nerve growth factor in embryonic proprioceptive neurons. Curr Biol 1998;8:915–8. doi: 10.1016/s0960-9822(07)00371-5
- Miller FD, Kaplan DR. Neurotrophin signalling pathways regulating neuronal apoptosis. Cell Mol Life Sci 2001;58:1045–53. doi: 10.1007/PL00000919
- Warita K, Mitsuhashi T, Ohta K, Suzuki S, Hoshi N, Miki T, Takeuchi Y. In vitro evaluation of gene expression changes for gonadotropin-releasing hormone 1, brain-derived neurotrophic factor and neurotrophic tyrosine kinase, receptor, type 2, in response to bisphenol a treatment. Congenit Anom (Kyoto) 2013 ; 53 : 42–5. doi : 10.1111/j.1741-4520.2012.00381.x
- Cheow LF, Courtois ET, Tan Y, Viswanathan R, Xing Q, Tan RZ, Tan DSW, Robson P, Loh Y, Quake SR, Burkholder WF. Single-cell multimodal profiling reveals cellular epigenetic heterogeneity. Nat Methods 2016;13:833–6. doi: 10.1038/nmeth.3961
- Cusanovich DA, Hill AJ, Aghamirzaie D, Daza RM, Pliner HA, Berletch JB, Filippova GN, Huang X, Christiansen L, DeWitt WS, Lee C, Regalado SG, Read DF, Steemers FJ, Disteche CM, Trapnell C, Shendure J. A single-cell atlas of in vivo mammalian chromatin accessibility. Cell 2018;174:1309–24. doi: 10.1016/j.cell.2018.06.052
- Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 1998;19:187–91 doi: 10.1038/561
- Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, Zoghbi HY. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 2008;320:1224–9. doi: 10.1126/science.1153252