References
- Apostolov S, Vaštag Đ, Matijević B, Nakomčić J, Marinković A. Studing retention behavior lipophilicity and pharmacokinetic characteristics of N-substituted Phenyl-2-chloroacetamides. Contemp Mater 2014;1:101–10. doi: 10.7251/cm.v1i5.1505
- Berest G. Synthesis and biological activity of novel N-cycloalkyl-(cycloalkylaryl)-2-[(3-R-2oxo-2H-[1,2,4] triazino[2,3-C]quinazoline-6-yl)thio]acetamides. Eur J Med Chem 2011;46:6066–74. doi: 10.1016/j.ejmech.2011.10.022
- Vastag G, Apostolov S, Matijević B. Prediction of lipophilicity and pharmacokinetics of chloroacetamides by chemometric approach. Iran J Pharm Res 2018;17:100–14. doi: 10.22037/IJPR.2018.2177
- Özkay D, Özkay U, Can Y, Özgür D. Synthesis and analgesic effects of 2-(2-carboxyphenylsulfanyl)-N-(4-substitutedphenyl)acetamide derivatives. Med Chem Res 2011;20:152–7. doi: 10.1007/s00044-010-9300-y
- Ertan T. Synthesis and biological evaluation of new N-(2-hydroxy-4(or 5)-nitro/aminophenyl)benzamides and phenylacetamides as antimicrobial agents. Bioorg Med Chem 2007;15:2032–44. doi: 10.1016/j.bmc.2006.12.035
- Hayakawa M. Phenylacetamide derivative. US Patent Application Publication Pub. No.: 20100286171 A1 (2010) [displayed 11 February 2021]. Available at https:// p a ten t i m a g e s. s to r a g e. go ogle a pi s. co m / d0/4d/69/2960cd9f20dc88/US20100286171A1.pdf
- Jawed H, Ali Shah SU, Jamall S, Simjee SU. N-(2-hydroxy phenyl) acetamide inhibits inflammation-related cytokines and ROS inadjuvant-induced arthritic (AIA) rats. Int Immunopharmacol 2010;10:900–5. doi: 10.1016/j. intimp.2010.04.028
- Kaldrikyan MA, Grigoryan LA, Melik-Ogandzhanyan RG, Arsenyan FG. Synthesis and antitumor activity of some benzofuryl-substituted 1,2,4-triazoles. Pharm Chem J 2009;43:242–4. doi: 10.1007/s11094-009-0287-y
- Hirashima A, Yoshii Y, Eto M. Synthesis and biological activity of 2-aminothiazolines and 2-mercaptothiazolines as octopaminergic agonists. Agric Biol Chem 1991;55:2537–45. doi: 10.1080/00021369.1991.10871030
- Okamoto H, Kato S, Kobutani T, Ogasawara M, Konnai M, Takematsu T. Herbicidally active N-(1-arylethenyl)-2-chloroacetamides bearing an alkyloxyalkyl moiety. Agric B i o l Chem 1 9 9 1 ; 5 5 : 2 7 3 7 – 4 3 . do i : 10.1080/00021369.1991.10871035
- Antypenko OM, Antypenko LM, Kovalenko SI, Katsev AM, Achkasova OM. Potential of N-aryl(benzyl,heteryl)-2-(tetrazolo[1,5-c]quinazolin-5-ylthio)acetamides as anticancer and antimicrobial agents. Arab J Chem 2016;9:792–805. doi: 10.1016/j.arabjc.2014.09.009
- Katke SA, Amrutkar SV, Bhor RJ, Khairnar MV. Synthesis of biologically active 2-Chloro-N-alkyl/aryl acetamide derivatives. Int J Pharma Sci Res 2011;2:148–56.
- Sharshira EM, Hamada NMM. Synthesis, characterization and antimicrobial activities of some thiazole derivatives. Am J Org Chem 2012;2:69–73. doi: 10.5923/j.ajoc.20120203.06
- Bilyi AK, Antypenko LM, Ivchuk VV, Kamyshnyi OM, Polishchuk NM, Kovalenko SI. 2-heteroaryl-[1,2,4] triazolo[1,5-c]quinazoline-5(6 H)-thiones and their S-substituted derivatives: synthesis, spectroscopic data, and biological activity. Chempluschem 2015;80:980–9. doi: 10.1002/cplu.201500051
- Goyal A, Tiwari M, Chaturvedi S. Synthesis and biological activities of glycolamide esters of cinmetacin. Asian J Chem 2005;17:631–3.
- Khan MSY, Khan RM. Synthesis and biological evaluation of glycolamide esters as potential prodrugs of some non-steroidal anti-inflammatory drugs. Indian J Chem B 2002;41:2172–5.
- Liang HY, Zhang DQ, Yue Y, Shi Z, Zhao SY. Synthesis and biological activity of some 1,3-dihydro-2H-3-benzazepin-2-ones with a piperazine moiety as bradycardic agents. Arch Pharm (Weinheim) 2010;343:114–9. doi: 10.1002/ ardp.200900169
- Zhao G, Yang H. The synthesis and biological activity of N-arylaminocarbonylmethylene-1,2-benzothiazine 1,1-dioxides. Chinese Chem Lett 1996;7:1087–8.
- Matijević BM, Vaštag ĐĐ, Apostolova SLj, Milčić MK, Marinković AD, Petrović SD N-(substituted phenyl)-2-chloroacetamides: LSER and LFER study. Arab J Chem 2019;12:3367–79. doi: 10.1016/j.arabjc.2015.09.008
- Dhanda SK, Singla D, Mondal AK, Raghava GPS. DrugMint: A webserver for predicting and designing of drug-like molecules. Biol Direct 2013;8:28. doi: 10.1186/1745-61508-28
- Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 2002;45:2615– 23. doi: 10.1021/jm020017n
- Egan WJ, Merz KM Jr, Baldwin JJ. Prediction of drug absorption using multivariate statistics. J Med Chem 2000;43:3867–77. doi: 10.1021/jm000292e
- Calculation of Molecular Properties and Bioactivity Score [displayed 22 February 2021]. Available at https://www.molinspiration.com/cgi-bin/properties
- Swiss Institute of Bioinformatics. SwisADME [displayed 22 February 2021]. Available at http://www.swissadme.ch/
- PreADMET [displayed 22 February 2021]. Available at https://preadmet.bmdrc.kr
- LabWorm. pkCSM [displayed 22 February 2021]. Available at: https://labworm.com/tool/pkcsm
- Sarker SD, Nahar L, Kumarasamy Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007;42:321–4. doi: 10.1016/j.ymeth.2007.01.006
- Ugwu DI, Okoro UC, Mishra NK. Synthesis, characterization and in vitro antitrypanosomal activities of new carboxamides bearing quinoline moiety. PLoS One 2018;13(1):e0191234. doi: 10.1371/journal.pone.0191234
- Loureiro DPR, Soares JX, Costa JC, Magakhaes AF, Azevedo CMG, Pinto MMM, Alfonso CMM. Structures, activities and drug-likeness of anti-infective xanthone derivatives isolated from the marine environment: a review. Molecules 2019;24:243. doi: 10.3390/molecules24020243
- Lazić A, Mandić Ž, Valentić N, Ušćumlić G, Trišović N. Dizajn, sinteza novih spirohidantoina izvedenih iz beta-tetralona i evaluacija njihovih farmakokinetički relevanthih svojstava [New spirohydantoins derived from β-tetralone: design, synthesis and evaluation of their pharmacokinetically relevant propertie, in Serbian]. Hem Ind 2019;73:79–92. doi: 10.2298/HEMIND181203007L
- Garcia-Sosa AT, Maran U, Hetenyi C. Molecular property filters describing pharmacokinetics and drug binding. Curr M e d Chem 2 0 1 2 ; 1 9 : 1 6 4 6 – 6 2 . do i : 10.2174/092986712799945021
- Singh SK, Gaur R, Kumar A, Fatima R, Mishra L, Srikrishna S. The flavonoid derivative 2-(4′ Benzyloxyphenyl)-3-hydroxy-chromen-4-one protects against Aβ42-induced neurodegeneration in transgenic drosophila: insights from in silico and in vivo studies. Neurotox Res 2014;26:331–50. doi: 10.1007/s12640-014-9466-z
- Sharma D, Kumar S, Narasimhan B, Ramasamy K, Lim S M, Ali Shah S, Mani V. Synthesis, molecular modelling and biological significance of N(4-(4‑bromophenyl) derivatives as prospective antimicrobial and antiproliferative agents BMC Chem 2019;13:46–60. doi: 10.1186/s13065-019-0564-0
- Singh DCP, Hashim SR, Singhal RG. Synthesis and antimicrobial activity of some new thioether derivatives of q u in o x a l in e . E- J Chem 2 0 11 ; 8 : 6 3 5 – 4 2 . do i : 10.1155/2011/482831
- Hamm PC, Speziale AJ. Relation of herbicidal activity to the amide moiety of N-substituted alpha-chloroacetamides. J Agric Food Chem 1956;4:518–22. doi: 10.1021/jf60064a001
- Constantinescu T, Lungu CN, Lung I. Lipophilicity as a central component of drug-like properties of chalchones and flavonoid derivatives. Molecules 2019;24:1505–16. doi: 10.3390/molecules24081505
- Jablonkai I. Alkylating reactivity and herbicidal activity of chloroacetamides. Pest Manag Sci 2003;59:443–50. doi: 10.1002/ps.634