References
- Klaips CL, Jayaraj GG, Hartl FU. Pathways of cellular proteostasis in aging and disease. J Cell Biol 2018;217:51–63. doi: 10.1083/jcb.201709072
- Albornoz N, Bustamante H, Soza A, Burgos P. Cellular responses to proteasome inhibition: molecular mechanisms and beyond. Int J Mol Sci 2019;20(14):3379. doi: 10.3390/ijms20143379
- Motosugi R, Murata S. Dynamic regulation of proteasome expression. Front Mol Biosci 2019;6:30. doi: 10.3389/fmolb.2019.00030
- Marshall RS, Vierstra RD. Dynamic regulation of the 26S proteasome: from synthesis to degradation. Front Mol Biosci 2019;6:40. doi: 10.3389/fmolb.2019.00040
- Sherman DJ, Li J. Proteasome inhibitors: harnessing proteostasis to combat disease. Molecules 2020;25(3):671. doi: 10.3390/molecules25030671
- Coleman RA, Trader DJ. Methods to discover and evaluate proteasome small molecule stimulators. Molecules 2019;24(12):2341. doi: 10.3390/molecules24122341
- Dammann P. Slow aging in mammals - Lessons from African mole-rats and bats. Semin Cell Dev Biol 2017;70:154–63. doi: 10.1016/j.semcdb.2017.07.006
- Cuanalo-Contreras K, Moreno-Gonzalez I. Natural products as modulators of the proteostasis machinery: implications in neurodegenerative diseases. Int J Mol Sci 2019;20(19):4666. doi: 10.3390/ijms20194666
- Zhang Y, Loh C, Chen J, Mainolfi N. Targeted protein degradation mechanisms. Drug Discov Today Technol 2019;31:53–60. doi: 10.1016/j.ddtec.2019.01.001
- Velena A, Zarkovic N, Gall Troselj K, Bisenieks E, Krauze A, Poikans J, Duburs G. 1,4‑Dihydropyridine derivatives: dihydronicotinamide analogues-model compounds targeting oxidative stress. Oxid Med Cell Longev 2016;2016:1892412. doi: 10.1155/2016/1892412
- Bruvere I, Bisenieks E, Poikans J, Uldrikis J, Plotniece A, Pajuste K, Rucins M, Vigante B, Kalme Z, Gosteva M, Domracheva I, Velena A, Vukovic T, Milkovic L, Duburs G, Zarkovic N. Dihydropyridine derivatives as cell growth modulators in vitro. O x i d Med Cell Longev 2017;2017:4069839. doi: 10.1155/2017/4069839
- Leonova E, Rostoka E, Sauvaigo S, Baumane L, Selga T, Sjakste N. Study of interaction of antimutagenic 1,4-dihydropyridine AV-153-Na with DNA-damaging molecules and its impact on DNA repair activity. PeerJ 2018;6:e4609. doi: 10.7717/peerj.4609
- Leonova E, Ošiņa K, Duburs G, Bisenieks E, Germini D, Vassetzky Y, Sjakste N. Metal ions modify DNA-protecting and mutagen-scavenging capacities of the AV-153 1,4-dihydropyridine. Mutat Res 2019;845:403077. doi: 10.1016/j.mrgentox.2019.06.007
- Ošiņa K, Rostoka E, Isajevs S, Sokolovska J, Sjakste T, Sjakste N. Effects of an antimutagenic 1,4-dihydropyridine AV-153 on expression of nitric oxide synthases and DNA repair-related enzymes and genes in kidneys of rats with a streptozotocin model of diabetes mellitus. Basic Clin Pharmacol Toxicol 2016;119:458–63. doi: 10.1111/bcpt.12617
- Ošiņa K, Leonova E, Isajevs S, Baumane L, Rostoka E, Sjakste T, Bisenieks E, Duburs G, Vīgante B, Sjakste N. Modifications of expression of genes and proteins involved in DNA repair and nitric oxide metabolism by carbatonides [disodium-2,6-dimethyl-1,4- dihydropyridine-3,5-bis(carbonyloxyacetate) derivatives] in intact and diabetic rats. Arh Hig Rada Toksikol 2017;68:212–27. doi: 10.1515/aiht-2017-68-2945
- Ošiņa K, Rostoka E, Sokolovska J, Paramonova N, Bisenieks E, Duburs G, Sjakste N, Sjakste T. 1,4-dihydropyridine derivatives without Ca2+-antagonist activity up-regulate Psma6 mRNA expression in kidneys of intact and diabetic rats. Cell Biochem Funct 2016;34:3–6. doi: 10.1002/cbf.3160
- Council of Europe. European Convention for the Protection of Vertebrate Animals Used for Experimental and other Scientific Purposes [displayed 31 May 2021]. Available at https://www.coe.int/en/web/conventions/full-list/-/conventions/treaty/123
- Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 2012;13:134. doi: 10.1186/1471-2105-13-134
- Sokolovska J, Isajevs S, Sugoka O, Sharipova J, Lauberte L, Svirina D, Rostoka E, Sjakste T, Kalvinsh I, Sjakste N. Correction of glycaemia and GLUT1 level by mildronate in rat streptozotocin diabetes mellitus model. Cell Biochem Funct 2011;29:55–63. doi: 10.1002/cbf.1719
- Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol L e t t 2 0 0 4 ; 2 6 : 5 0 9 – 1 5 . d o i : 10.1023/b:bile.0000019559.84305.47
- Taylor SC, Nadeau K, Abbasi M, Lachance C, Nguyen M, Fenrich J. The ultimate qPCR experiment: producing publication quality, reproducible data the first time. Trends Biotechnol 2 0 1 9 ; 3 7 : 7 6 1 – 7 4 . doi: 1 0 . 1 0 1 6 / j . tibtech.2018.12.002
- Caputi FF, Carboni L, Mazza D, Candeletti S, Romualdi P. Cocaine and ethanol target 26S proteasome activity and gene expression in neuroblastoma cells. Drug Alcohol Depend 2016;161:265–75. doi: 10.1016/j.drugalcdep.2016.02.012
- Misane I, Klusa V, Dambrova M, Germane S, Duburs G, Bisenieks E, Rimondini R, Ogren SO. “Atypical” neuromodulatory profile of glutapyrone, a representative of a novel ‘class’ of amino acid-containing dipeptide-mimicking 1,4-dihydropyridine (DHP) compounds: in vitro and in vivo studies. Eur Neuropharmacol 1998;8:329–47. doi: 10.1016/s0924-977x(97)00097-7
- Milkovic L, Vukovic T, Zarkovic N, Tatzber F, Bisenieks E, Kalme Z, Bruvere I, Ogle Z, Poikans J, Velena A, Duburs G. Antioxidative 1,4-dihydropyridine derivatives modulate oxidative stress and growth of human osteoblast-like cells in vitro. Antioxidants (Basel) 2018;7(9):123. doi: 10.3390/antiox7090123
- Kwak MK, Wakabayashi N, Greenlaw JL, Yamamoto M, Kensler TW. Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Mol Cell Biol 2003;23:8786–94. doi: 10.1128/MCB.23.23.8786-8794.2003
- Huber N, Sakai N, Eismann T, Shin T, Kuboki S, Blanchard J, Schuster R, Edwards MJ, Wong HR, Lentsch AB. Age-related decrease in proteasome expression contributes to defective nuclear factor-kappaB activation during hepatic ischemia/reperfusion. Hepatology 2009;49:1718–28. doi: 10.1002/hep.22840
- Chondrogianni N, Petropoulos I, Franceschi C, Friguet B, Gonos ES. Fibroblast cultures from healthy centenarians have an active proteasome. Exp Gerontol 2000;35:721–8. doi: 10.1016/s0531-5565(00)00137-6
- Chondrogianni N, Stratford FL, Trougakos IP, Friguet B, Rivett AJ, Gonos ES. Central role of the proteasome in senescence and survival of human fibroblasts: induction of a senescence-like phenotype upon its inhibition and resistance to stress upon its activation. J Biol Chem 2003;278:28026–37. doi: 10.1074/jbc.M301048200
- Altar CA, Jurata LW, Charles V, Lemire A, Liu P, Bukhman Y, Young TA, Bullard J, Yokoe H, Webster MJ, Knable MB, Brockman JA. Deficient hippocampal neuron expression of proteasome, ubiquitin, and mitochondrial genes in multiple schizophrenia cohorts. Biol Psychiatry 2005;58:85–96. doi: 10.1016/j.biopsych.2005.03.031
- Grünblatt E, Mandel S, Jacob-Hirsch J, Zeligson S, Amariglo N, Rechavi G, Li J, Ravid R, Roggendorf W, Riederer P, Youdim MBH. Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes. J Neural Transm 2004;111:1543–73. doi: 10.1007/s00702-004-0212-1