Have a personal or library account? Click to login
Oxidative and apoptotic effects of fluoxetine and its metabolite norfluoxetine in Daphnia magna Cover

Oxidative and apoptotic effects of fluoxetine and its metabolite norfluoxetine in Daphnia magna

Open Access
|Oct 2020

References

  1. Snyder S, Lue-Hing C, Cotruvo J, Drewes JE, Eaton A, Pleus RC, Schlenk D. Pharmaceuticals in the Water Environment. Washington (DC): Association of Metropolitan Water Agencies; 2009.
  2. Flaherty CM, Dodson SI. Effects of pharmaceuticals on Daphnia survival, growth, and reproduction. Chemosphere 2005;61:200–7. doi: 10.1016/j.chemosphere.2005.02.016
  3. Weinberger J, 2nd Klaper R. Environmental concentrations of the selective serotonin reuptake inhibitor fluoxetine impact specific behaviors involved in reproduction, feeding and predator avoidance in the fish Pimephales promelas (fathead minnow). Aquat Toxicol 2014;151:77–83. doi: 10.1016/j.aquatox.2013.10.012
  4. Pal A, He Y, Jekel M, Reinhard M, Gin KYH. Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle. Environ Int 2014;71:46–62. doi: 10.1016/j.envint.2014.05.025
  5. Kostich MS, Lazorchak JM. Risks to aquatic organisms posed by human pharmaceutical use. Sci Total Environ 2008;389:329–39. doi: 10.1016/j.scitotenv.2007.09.008
  6. Cooper ER, Siewicki TC, Phillips K. Preliminary risk assessment database and risk ranking of pharmaceuticals in the environment. Sci Total Environ 2008;398:26–33. doi: 10.1016/j.scitotenv.2008.02.061
  7. Stokes PE, Holtz A. Fluoxetine tenth anniversary update: The progress continues. Clin Ther 1997;19:1135–250. doi: 10.1016/s0149-2918(97)80066-5
  8. OECD. Health Status 2020. [displayed 7 July 2020]. Available at https://stats.oecd.org/index.aspx?DataSetCode=HEALTH_STAT
  9. Perez-Caballero L, Torres-Sanchez S, Bravo L, Mico JA, Berrocoso E. Fluoxetine: a case history of its discovery and preclinical development. Expert Opin Drug Discov 2014;9:567–78. doi: 10.1517/17460441.2014.907790
  10. Nentwig G. Another example of effects of pharmaceuticals on aquatic invertebrates: fluoxetine and ciprofloxacin. In: Kümmerer K, editor. Pharmaceuticals in the environment. Sources, fate, effects and risks. Berlin, Heidelberg: Springer-Verlag; 2008. p. 205–22.
  11. Metcalfe CD, Chu S, Judt C, Li H, Oakes KD, Servos MR, Andrews DM. Antidepressants and their metabolites in municipal wastewater, and downstream exposure in an urban watershed. Environ Toxicol Chem 2010;29:79–89. doi: 10.1002/etc.27
  12. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: A national reconnaissance. Environ Sci Technol 2002;36(6):1202–1211. doi: 10.1021/es011055j
  13. Vasskog T, Anderssen T, Pedersen-Bjergaard S, Kallenborn R, Jensen E. Occurrence of selective serotonin reuptake inhibitors in sewage and receiving waters at Spitsbergen and in Norway. J Chromatogr A 2008;1185(2):194–205. doi: 10.1016/j.chroma.2008.01.063
  14. Ding J, Zou H, Liu Q, Zhang S, Mamitiana Razanajatovo R. Bioconcentration of the antidepressant fluoxetine and its effects on the physiological and biochemical status in Daphnia magna. Ecotoxicol Environ Saf 2017;142:102–9. doi: 10.1016/j.ecoenv.2017.03.042
  15. Ehrenström F, Berglind R. Determination of biogenic amines in the water flea, Daphnia magna (Cladocera, Crustacea) and their diurnal variations using ion-pair reversed phase HPLC with electrochemical detection. Comp Biochem Physiol Part C 1988;90:123-32. doi: 10.1016/0742-8413(88)90108-9
  16. McCoole MD, Atkinson NJ, Graham DI, Grasser EB, Joselow AL, McCall NM, Welker AM, Wilsterman EJ, Baer KN, Tilden AR, Christie AE. Genomic analyses of aminergic signaling systems (dopamine, octopamine and serotonin) in Daphnia pulex. Comp Biochem Physiol Part D 2012;7:35–58. doi: 10.1016/j.cbd.2011.10.005
  17. ASTM E729-96. Standard Guide for Conducting Acute Toxicity Tests on Test Materials with Fishes, Macroinvertebrates, and Amphibians. West Conshohocken (PA): ASTM International; 2002.
  18. Cleresci LS, Greenberg AE, Eaton AD, editors. Standard Methods for the Examination of Water and Wastewater. 20th ed. Washington (DC): American Public Health Association, American Water Works Association, Water Environment Federation; 1999.
  19. Organisation for Economic Co-operation and Development. OECD Guidelines for the Testing of Chemicals. Section 2: Effects on Biotic Systems. OECD Library; 2004. doi: 10.1787/20745761
  20. Ursini F, Maiorino M. Glutathione peroxidases. In: Lennarz WJ, Lane MD, editors. Encyclopedia of biological chemistry. 2nd ed. Amsterdam: Elsevier; 2013. p. 399–404.
  21. Beutler E. Red Cell Metabolism: A Manual of Biochemical Methods. 2nd ed. New York: Grune and Starton; 1984.
  22. Zhang X-J, Greenberg DS. Acetylcholinesterase involvement in apoptosis. Front Mol Neurosci 2012;5:40. doi: 10.3389/fnmol.2012.00040
  23. Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9
  24. Spiteller G. Peroxidation of linoleic acid and its relation to aging and age dependent diseases. Mech Ageing Dev 2001;122:617–57. doi: 10.1016/S0047-6374(01)00220-2
  25. Wills ED. Mechanisms of lipid peroxide formation in animal tissues. Biochem J 1966;99:667-76. doi: 10.1042/bj0990667
  26. Stoscheck CM. Quantitation of protein. Methods Enzymol 1990;182:50–68. doi: 10.1016/0076-6879(90)82008-P
  27. Teplova VV, Andreeva-Kovalevskaya ZI, Sineva EV, Solonin AS. Quick assessment of cytotoxins effect on Daphnia magna using in vivo fluorescence microscopy. Environ Toxicol Chem 2010;29:1345–8. doi: 10.1002/etc.169
  28. Gottlieb E, Armour SM, Harris MH, Thompson CB. Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ 2003;10:709–17. doi: 10.1038/sj.cdd.4401231
  29. Han D, Williams E, Cadenas E. Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem J 2001;353:411–6. doi: 10.1042/0264-6021:3530411
  30. Alvarez-Paggi D, Hannibal L, Castro MA, Oviedo-Rouco S, Demicheli V, Tórtora V, Tomasina F, Radi R, Murgida DH. Multifunctional cytochrome c: Learning new tricks from an old dog. Chem Rev 2017;117:13382–460. doi: 10.1021/acs.chemrev.7b00257
  31. Lu Z, Xu S. ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life 2006;58:621–31. doi: 10.1080/15216540600957438
  32. Zhu X, Chang Y, Chen Y. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 2010;78:209–15. doi: 10.1016/j.chemosphere.2009.11.013
  33. Li S, Tan Y. Hormetic response of cholinesterase from Daphnia magna in chronic exposure to triazophos and chlorpyrifos. J Environ Sci 2011;23:852–9. doi: 10.1016/S1001-0742(10)60516-5
  34. Wu Z, Cheng H, Jiang Y, Melcher K, Xu HE. Ion channels gated by acetylcholine and serotonin: structures, biology, and drug discovery. Acta Pharmacol Sin 2015;36:895–907. doi: 2020-09-10 00:11:12.
  35. Gonzalez-Rey M, Bebianno MJ. Does selective serotonin reuptake inhibitor (SSRI) fluoxetine affects mussel Mytilus galloprovincialis? Environ Pollut 2013;173:200–9. doi: 10.1016/j.envpol.2012.10.018
  36. Mesquita SR, Guilhermino L, Guimarães L. Biochemical and locomotor responses of Carcinus maenas exposed to the serotonin reuptake inhibitor fluoxetine. Chemosphere 2011;85:967–76. doi: 10.1016/j.chemosphere.2011.06.067
  37. Goldberg JI, Mills LR, Kater SB. Effects of serotonin on intracellular calcium in embryonic and adult Helisoma neurons. Int J Dev Neurosci 1992;10:255–64 doi: 10.1016/0736-5748(92)90014-Q
  38. Cooper RL, Winslow JL, Govind CK, Atwood HL. Synaptic structural complexity as a factor enhancing probability of calcium-mediated transmitter release. J Neurophysiol 1996;75:2451–66. doi: 10.1152/jn.1996.75.6.2451
  39. Simmons LK, Koester J. Serotonin enhances the excitatory acetylcholine response in the RB cell cluster of Aplysia californica. J Neurosci 1986;6:774–81. doi: 10.1523/JNEUROSCI.06-03-00774.1986
  40. Kiehn O, Harris-Warrick RM. Serotonergic stretch receptors induce plateau properties in a crustacean motor neuron by a dual-conductance mechanism. J Neurophysiol 1992;68:485–95. doi: 10.1152/jn.1992.68.2.485
  41. Görlach A, Bertram K, Hudecova S, Krizanova O. Calcium and ROS: A mutual interplay. Redox Biol 2015;6:260–71. doi: 10.1016/j.redox.2015.08.010
  42. Chen XY, Shao JZ, Xiang LX, Liu XM. Involvement of apoptosis in malathion-induced cytotoxicity in a grass carp Ctenopharyngodon idellus cell line. Comp Biochem Physiol C Toxicol Pharmacol 2006;142:36–45. doi: 10.1016/j.cbpc.2005.10.010
  43. Xian J-A, Wang A-L, Ye C-X, Chen X-D, Wang W-N. Phagocytic activity, respiratory burst, cytoplasmic free-Ca2+ concentration and apoptotic cell ratio of haemocytes from the black tiger shrimp, Penaeus monodon under acute copper stress. Comp Biochem Physiol Part C Toxicol Pharmacol 2010;152:182–8. doi: 10.1016/j.cbpc.2010.04.003
  44. Yardimci M, Sevgiler Y, Rencuzogullari E, Arslan M, Buyukleyla M, Yilmaz M. Sex-, tissue-, and exposure duration-dependent effects of imidacloprid modulated by piperonyl butoxide and menadione in rats. Part I: oxidative and neurotoxic potentials. Arh Hig Rada Toksikol 2014;65:387–98. doi:10.2478/10004-1254-65-2014-2554
  45. Yang ZP, Dettbarn W-D. Diisopropylphosphorofluoridate-induced cholinergic hyperactivity and lipid peroxidation. Toxicol Appl Pharmacol 1996;138:48–53. doi: 10.1006/taap.1996.0096
  46. Sancho E, Villarroel MJ, Andreu E, Ferrando MD. Disturbances in energy metabolism of Daphnia magna after exposure to tebuconazole. Chemosphere 2009;74:1171–8. doi: 10.1016/j.chemosphere.2008.11.076
  47. Campos B, Piña B, Barata CC. Mechanisms of action of selective serotonin reuptake inhibitors in Daphnia magna. Environ Sci Technol 2012;46:2943–50. doi: 10.1021/es203157f
  48. Villarroel MJ, Sancho E, Andreu-Moliner E, Ferrando MD. Biochemical stress response in tetradifon exposed Daphnia magna and its relationship to individual growth and reproduction. Sci Total Environ 2009;407:5537–42. doi: 10.1016/j.scitotenv.2009.06.032
  49. Bertrand L, Monferrán MV, Mouneyrac C, Bonansea RI, Asis R, Amé MV. Sensitive biomarker responses of the shrimp Palaemonetes argentinus exposed to chlorpyrifos at environmental concentrations: Roles of alpha-tocopherol and metallothioneins. Aquat Toxicol 2016;179:72–81. doi: 10.1016/j.aquatox.2016.08.014
  50. Jung T, Höhn A, Grune T. The proteasome and the degradation of oxidized proteins: Part II - protein oxidation and proteasomal degradation. Redox Biol 2014;2:99–104. doi: 10.1016/j.redox.2013.12.008
  51. Barata C, Varo I, Navarro JC, Arun S, Porte C. Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds. Comp Biochem Physiol Part C Toxicol Pharmacol 2005;140:175–86. doi: 10.1016/j.cca.2005.01.013
  52. Yuxuan Z, Peiyong G, Yanmei W, Xiaoyan Z, Meixian W, Simin Y, et al. Evaluation of the subtle effects and oxidative stress response of chloramphenicol, thiamphenicol, and florfenicol in Daphnia magna. Environ Toxicol Chem 2019;38:575–84. doi: 10.1002/etc.4344
  53. Sonakowska L, Włodarczyk A, Wilczek G, Wilczek P, Student S, Rost-Roszkowska MM. Cell death in the epithelia of the intestine and hepatopancreas in Neocaridina heteropoda (Crustacea, Malacostraca). PLoS One 2016;11:e0147582. doi: 10.1371/journal.pone.0147582
  54. Abdel-Razaq W, Kendall DA, Bates TE. The effects of antidepressants on mitochondrial function in a model cell system and isolated mitochondria. Neurochem Res 2011;36:327–38. doi: 10.1007/s11064-010-0331-z
  55. Stensberg MC, Madangopal R, Yale G, Wei Q, Ochoa-Acuña H, Wei A, McLamore ES, Rickus J, Porterfield DM, Sepúlveda MS. Silver nanoparticle-specific mitotoxicity in Daphnia magna. Nanotoxicology 2014;8:833–42. doi: 10.3109/17435390.2013.832430
  56. Skulachev VP. Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett 1998;423:275–80. doi: 10.1016/S0014-5793(98)00061-1
  57. Caglayan C, Kandemir FM, Darendelioğlu E, Yıldırım S, Kucukler S, Dortbudak MB. Rutin ameliorates mercuric chloride-induced hepatotoxicity in rats via interfering with oxidative stress, inflammation and apoptosis. J Trace Elem Med Biol 2019;56:60–8. doi: 10.1016/j.jtemb.2019.07.011
  58. Nowak G, Clifton GL, Godwin ML, Bakajsova D. Activation of ERK1/2 pathway mediates oxidant-induced decreases in mitochondrial function in renal cells. Am J Physiol-Ren Physiol 2006;291:F840–55. doi: 10.1152/ajprenal.00219.2005
  59. Kavaliers M, Choleris E. Antipredator responses and defensive behavior: ecological and ethological approaches for the neurosciences. Neurosci Biobehav Rev 2001;25:577–86. doi: 10.1016/S0149-7634(01)00042-2
  60. Vandenbrouck T, Soetaert A, van der Ven K, Blust R, De Coen W. Nickel and binary metal mixture responses in Daphnia magna molecular fingerprints and (sub)organismal effects. Aquat Toxicol 2009;92:18–29. doi: 10.1016/j.aquatox.2008.12.012
  61. Papchenkova GA, Golovanova IL, Ushakova NV. The parameters of reproduction, sizes, and activities of hydrolases in Daphnia magna Straus of successive generations affected by Roundup herbicide. Inland Water Biol 2009;2:286–91. doi: 10.1134/S1995082909030158
  62. Pery ARR, Gust M, Vollat B, Mons R, Ramil M, Fink G, Ternes T, Garric J. Fluoxetine effects assessment on the life cycle of aquatic invertebrates. Chemosphere 2008;73:300–4. doi: 10.1016/j.chemosphere.2008.06.029
  63. Campos B, Rivetti C, Kress T, Barata C, Dircksen h. Depressing antidepressant: Fluoxetine affects serotonin neurons causing adverse reproductive responses in Daphnia magna. Environ Sci Technol 2016;50:6000–7. doi: 10.1021/acs.est.6b00826
  64. Fong PP, Ford AT. The biological effects of antidepressants on the molluscs and crustaceans: A review. Aquat Toxicol 2014;151:4–13. doi: 10.1016/j.aquatox.2013.12.003
  65. Lister A, Regan C, Van Zwol J, Van Der Kraak G. Inhibition of egg production in zebrafish by fluoxetine and municipal effluents: A mechanistic evaluation. Aquat Toxicol. 2009;95:320–9. doi: 10.1016/j.aquatox.2009.04.011
DOI: https://doi.org/10.2478/aiht-2020-71-3473 | Journal eISSN: 1848-6312 | Journal ISSN: 0004-1254
Language: English, Croatian, Slovenian
Page range: 211 - 222
Submitted on: Jul 1, 2020
Accepted on: Sep 1, 2020
Published on: Oct 6, 2020
Published by: Institute for Medical Research and Occupational Health
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Sevgi Başalan Över, Celal Güven, Eylem Taskin, Yusuf Sevgiler, published by Institute for Medical Research and Occupational Health
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.