Have a personal or library account? Click to login

Nephrotoxicity and genotoxicity of silver nanoparticles in juvenile rats and possible mechanisms of action

By:
Ye Liu,  Li Sun,  Guili Yang and  Zhuo Yang  
Open Access
|Jun 2020

References

  1. Maynard AD, Aitken RJ. “Safe handling of nanotechnology” ten years on. Nat Nanotechnol 2016;11:998–1000. doi: 10.1038/nnano.2016.270
  2. West JL, Halas NJ. Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annu Rev Biomed Eng 2003;5:285–92. doi: 10.1146/annurev.bioeng.5.011303.120723
  3. Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett 2008;176:1–12. doi: 10.1016/j.toxlet.2007.10.004
  4. Park EJ, Bae E, Yi J, Kim Y, Choi K, Lee SH, Yoon J, Lee BC, Park K. Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol 2010;30:162–8. doi: 10.1016/j.etap.2010.05.004
  5. Kouame K, Peter AI, Akang EN, Adana M, Moodley R, Naidu EC, Azu OO. Effect of long-term administration of Cinnamomum cassia silver nanoparticles on organs (kidneys and liver) of Sprague-Dawley rats. Turk J Biol 2018;42:498–505. doi: 10.3906/biy-1805-103
  6. Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science 2006;311:622–7. doi: 10.1126/science.1114397
  7. Liu Y, Guan W, Ren G, Yang Z. The possible mechanism of silver nanoparticle impact on hippocampal synaptic plasticity and spatial cognition in rats. Toxicol Lett 2012;209:227–31. doi: 10.1016/j.toxlet.2012.01.001
  8. Sun X, Yang Y, Shi J, Wang C, Yu Z, Zhang H. NOX4- and Nrf2-mediated oxidative stress induced by silver nanoparticles in vascular endothelial cells. J Appl Toxicol 2017;37:1428–37. doi: 10.1002/jat.3511
  9. Schreck C, O’Connor PM. NAD(P)H oxidase and renal epithelial ion transport. Am J Physiol Regul Integr Comp Physiol 2011;300:R1023–9. doi: 10.1152/ajpregu.00618.2010
  10. Sedeek M, Nasrallah R, Touyz RM, Hébert RL. NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J Am Soc Nephrol 2013;24:1512–8. doi: 10.1681/ASN.2012111112
  11. Tucker PS, Scanlan AT, Dalbo VJ. Chronic kidney disease influences multiple systems: describing the relationship between oxidative stress, inflammation, kidney damage, and concomitant disease. Oxid Med Cell Longev 2015;2015:806358. doi: 10.1155/2015/806358
  12. Favero TG, Zable AC, Abramson JJ. Hydrogen peroxide stimulates the Ca2+ release channel from skeletal muscle sarcoplasmic reticulum. J Biol Chem 1995;270:25557–63. doi: 10.1074/jbc.270.43.25557
  13. Hidalgo C, Donoso P. Crosstalk between calcium and redox signaling: from molecular mechanisms to health implications. Antioxid Redox Signal 2008;10:1275–312. doi: 10.1089/ars.2007.1886
  14. Tabet F, Savoia C, Schiffrin EL, Touyz RM. Differential calcium regulation by hydrogen peroxide and superoxide in vascular smooth muscle cells from spontaneously hypertensive rats. J Cardiovasc Pharmacol 2004;44:200–8. doi: 10.1097/00005344-200408000-00009
  15. Trebak M, Ginnan R, Singer HA, Jourd’heuil D. Interplay between calcium and reactive oxygen/nitrogen species: an essential paradigm for vascular smooth muscle signaling. Antioxid Redox Signal 2010;12:657–74. doi: 10.1089/ars.2009.2842
  16. Goel M, Sinkins WG, Zuo CD, Estacion M, Schilling WP. Identification and localization of TRPC channels in the rat kidney. Am J Physiol Renal Physiol 2006;290:F1241–52. doi: 10.1152/ajprenal.00376.2005
  17. Sours S, Du J, Chu S, Ding M, Zhou XJ, Ma R. Expression of canonical transient receptor potential (TRPC) proteins in human glomerular mesangial cells. Am J Physiol Renal Physiol 2006;290:F1507–15. doi: 10.1152/ajprenal.00268.2005
  18. Reiser J, Polu KR, Moller CC, Kenlan P, Altintas MM, Wei C, Faul C, Herbert S, Villegas I, Avila-Casado C, McGee M, Sugimoto H, Brown D, Kalluri R, Mundel P, Smith PL, Clapham DE, Pollak MR. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 2005;37:739–44. doi: 10.1038/ng1592
  19. Krall P, Canales CP, Kairath P, Carmona-Mora P, Molina J, Carpio JD, Ruiz P, Mezzano SA, Li J, Wei C, Reiser J, Young JI, Walz K. Podocyte-specific overexpression of wild type or mutant TRPC6 in mice is sufficient to cause glomerular disease. PloS One 2010;5:e12859. doi: 10.1371/journal. pone.0012859
  20. Wang Z, Wei X, Zhang Y, Ma X, Li B, Zhang S, Yi F. NADPH oxidase-derived ROS contributes to upregulation of TRPC6 expression in puromycin aminonucleoside-induced podocyte injury. Cell Physiol Biochem 2009;24:619–26. doi: 10.1159/000257517
  21. Donner M, Tran L, Muller J, Vrijhof H. Genotoxicity of engineered nanomaterials. Nanotoxicology 2010;4:345–6. doi: 10.3109/17435390.2010.482750
  22. Kim YJ, Rahman MM, Lee SM, Kim JM, Park K, Kang JH, Seo YR. Assessment of in vivo genotoxicity of citrated-coated silver nanoparticles via transcriptomic analysis of rabbit liver tissue. Int J Nanomedicine 2019;14:393–405. doi: 10.2147/IJN.S174515
  23. Souza TA, Franchi LP, Rosa LR, da Veiga MA, Takahashi CS. Cytotoxicity and genotoxicity of silver nanoparticles of different sizes in CHO-K1 and CHO-XRS5 cell lines. Mutat Res Genet Toxicol Environ Mutagen 2016;795:70–83. doi: 10.1016/j.mrgentox.2015.11.002
  24. Legras A, Kondor A, Heitzmann MT, Truss RW. Inverse gas chromatography for natural fibre characterisation: Identification of the critical parameters to determine the Brunauer-Emmett-Teller specific surface area. J Chromatogr A 2015;1425:273–9. doi: 10.1016/j.chroma.2015.11.033
  25. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes [displayed 21 May 2020]. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32010L0063&from=EN
  26. Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, Wright CJ, Doak SH. NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 2009;30:3891–914. doi: 10.1016/j. biomaterials.2009.04.009
  27. Landsiedel R, Kapp MD, Schulz M, Wiench K, Oesch F. Genotoxicity investigations on nanomaterials: methods, preparation and characterization of test material, potential artifacts and limitations - many questions, some answers. Mutat Res 2009;681:241–58. doi: 10.1016/j. mrrev.2008.10.002
  28. Arora S, Rajwade JM, Paknikar KM. Nanotoxicology and in vitro studies: the need of the hour. Toxicol Appl Pharmacol 2012;258:151–65. doi: 10.1016/j.taap.2011.11.010
  29. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 2000;35:206–21. doi: 10.1002/(sici)1098-2280(2000)35:3<;206::aidem8>3.0.co;2-j
  30. Machado Cda S, Venancio VP, Aissa AF, Hernandes LC, de Mello MB, Del Lama JE, Marzocchi-Machado CM, Bianchi ML, Antunes LM. Vitamin D3 deficiency increases DNA damage and the oxidative burst of neutrophils in a hypertensive rat model. Mutat Res Genet Toxicol Environ Mutagen 2016;798–799:19–26. doi: 10.1016/j. mrgentox.2016.01.005
  31. Salamone M, Heddle J, Stuart E, Katz M. Towards an improved micronucleus test: studies on 3 model agents, mitomycin C, cyclophosphamide and dimethylbenzanthracene. Mutat Res 1980;74:347–56. doi: 10.1016/0165-1161(80)90193-4
  32. Schmid W. The micronucleus test. Mutat Res 1975;31:9–15. doi: 10.1016/0165-1161(75)90058-8
  33. Liu Y, Liu C, Qin X, Zhu M, Yang Z. The change of spatial cognition ability in depression rat model and the possible association with down-regulated protein expression of TRPC6. Behav Brain Res 2015;294:186–93. doi: 10.1016/j. bbr.2015.07.062
  34. Sarhan OM, Hussein RM. Effects of intraperitoneally injected silver nanoparticles on histological structures and blood parameters in the albino rat. Int J Nanomedicine 2014;9:1505–17. doi: 10.2147/IJN.S56729
  35. Vinković Vrček I, Žuntar I, Petlevski R, Pavičić I, Dutour Sikirić M, Ćurlin M, Goessler W. Comparison of in vitro toxicity of silver ions and silver nanoparticles on human hepatoma cells. Environ Toxicol 2016;31:679–92. doi: 10.1002/tox.22081
  36. Wei L, Lu J, Xu H, Patel A, Chen ZS, Chen G. Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today 2015;20:595–601. doi: 10.1016/j.drudis.2014.11.014
  37. Wang E, Huang Y, Du Q, Sun Y. Silver nanoparticle induced toxicity to human sperm by increasing ROS(reactive oxygen species) production and DNA damage. Environ Toxicol Pharmacol 2017;52:193–9. doi: 10.1016/j.etap.2017.04.010
  38. Naik E, Dixit VM. Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J Exp Med 2011;208:417–20. doi: 10.1084/jem.20110367
  39. Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002;418:191–5. doi: 10.1038/nature00858
  40. Dietrich A, Chubanov V, Gudermann T. Renal TRPathies. J Am Soc Nephrol 2010;21:736–44. doi: 10.1681/ASN.2009090948
  41. Yu S, Yu L. Dexamethasone resisted podocyte injury via stabilizing TRPC6 expression and distribution. Evid Based Complement Alternat Med 2012;2012:652059. doi: 10.1155/2012/652059
  42. Ray PC, Yu H, Fu PP. Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 2009;27:1–35. doi: 10.1080/10590500802708267
  43. Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2008;2:2121–34. doi: 10.1021/nn800511k
  44. Wang S, Lu W, Tovmachenko O, Rai US, Yu H, Ray PC. Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes. Chem Phys Lett 2008;463:145–9. doi: 10.1016/j.cplett.2008.08.039
  45. Shaligram S, Campbell A. Toxicity of copper salts is dependent on solubility profile and cell type tested. Toxicol In Vitro 2013;27:844–51. doi: 10.1016/j.tiv.2012.12.026
  46. Lu W, Senapati D, Wang S, Tovmachenko O, Singh AK, Yu H, Ray PC. Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Chem Phys Lett 2010;487:92–6. doi: 10.1016/j.cplett.2010.01.027
DOI: https://doi.org/10.2478/aiht-2020-71-3364 | Journal eISSN: 1848-6312 | Journal ISSN: 0004-1254
Language: English, Croatian, Slovenian
Page range: 121 - 129
Submitted on: Nov 1, 2019
Accepted on: May 1, 2020
Published on: Jun 29, 2020
Published by: Institute for Medical Research and Occupational Health
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Ye Liu, Li Sun, Guili Yang, Zhuo Yang, published by Institute for Medical Research and Occupational Health
This work is licensed under the Creative Commons Attribution 4.0 License.