Have a personal or library account? Click to login
Yesterday masked, today modified; what do mycotoxins bring next? Cover

Yesterday masked, today modified; what do mycotoxins bring next?

Open Access
|Oct 2018

References

  1. 1. Kovalsky P, Kos G, Nährer K, Schwab C, Jenkins T, Schatzmayr G, Sulyok M, Krska R. Co-occurrence of regulated, masked and emerging mycotoxins and secondary metabolites in finished feed and maize - an extensive survey. Toxins 2016;8:363. doi: 10.3390/toxins8120363
  2. 2. Righetti L, Paglia G, Galaverna G, Dall’Asta C. Recent advances and future challenges in modified mycotoxin analysis: Why HRMS has become a key instrument in food contaminant research. Toxins 2016;8:361. doi: 10.3390/toxins8120361
  3. 3. Berthiller F, Maragos CC, Dall’Asta C. Introduction to masked mycotoxins. In: Dall’Asta C, Berthiller F, editors. Masked mycotoxins in food - formation, occurrence and toxicological relevance. Cambridge: The Royal Society of Chemistry; 2016. p. 1-13. doi: 10.1039/9781782622574-00001
  4. 4. Bennett JW. Mycotoxins, mycotoxicosis, mycotoxicology and Mycopathologia. Mycopathologia 1987;100:3-5. doi: 10.1007/BF00769561
  5. 5. Streit E, Naehrer K, Rodrigues I, Schatzmayr G. Mycotoxin occurrence in feed and feed raw materials worldwide: Longterm analysis with special focus on Europe and Asia. J Sci Food Agr 2013;93:2892-9. doi: 10.1002/jsfa.6225
  6. 6. Nährer K, Kovalsky P. A summary of the major threats. BIOMIN Mycotoxin Survey [displayed 12 July 2018]. Available at http://www.biomin.net/uploads/tx_news/ART_No09_MYC_EN_0214.pdf]
  7. 7. Berthiller F, Crews C, Dall’Asta C, Saeger SD, Haesaert G, Karlovsky P, Oswald IP, Seefelder W, Speijers G, Stroka J. Masked mycotoxins: A review. Mol Nutr Food Res 2013;57:165-86. doi: 10.1002/mnfr.201100764
  8. 8. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs setting maximum levels certain contamination foodstuffs [displayed 12 July 2018]. Available at http://eurlex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R1881&from=EN
  9. 9.2013/165/EU: Commission Recommendation of 27 March 2013 on the presence of T-2 and HT-2 toxin in cereals and cereal products Text with EEA relevance [displayed 12 July 2018]. Available at https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013H0165&from=EN
  10. 10. Van Egmond HP, Schothorst RC, Jonker MA. Regulations relating to mycotoxins in food perspectives in a global and European context. Anal Bioanal Chem 2007;389:147-57. doi: 10.1007/s00216-007-1317-9
  11. 11. Broekaert N, Devreese M, De Baere S, De Backer P, Croubels S. Modified Fusarium mycotoxins unmasked: From occurrence in cereals to animal and human excretion. Food Chem Toxicol 2015;80:17-31. doi: 10.1016/j.fct.2015.02.015
  12. 12. Rychlik M, Humpf H-U, Marko D, Dänicke S, Mally A, Berthiller F, Klaffke H, Lorenz N. Proposal of a comprehensive definition of modified and other forms of mycotoxins including “masked” mycotoxins. Mycotoxin Res 2014;30:197-205. doi: 10.1007/s12550-014-0203-5
  13. 13. EFSA Panel on Contaminants in the Food Chain. Scientific opinion on the risks for human and animal health related to the presence of modified forms of certain mycotoxins in food and feed. EFSA J 2014;12(12):3916. doi: 10.2903/j.efsa.2014.3916
  14. 14. Binder SB, Schwartz-Zimmermann HE, Varga E, Bichl G, Michlmayr H, Adam G, Berthiller F. Metabolism of zearalenone and its major modified forms in pigs. Toxins 2017;9:56. doi: 10.3390/toxins9020056
  15. 15. Schneweis I, Meyer K, Engelhardt G, Bauer J. Occurrence of zearalenone-4-β-D-glucopyranoside in wheat. J Agr Food Chem 2002;50:1736-8. doi: 10.1021/jf010802t
  16. 16. Berthiller F, Dall’Asta C, Schuhmacher R, Lemmens M, Adam G, Krska R. Masked mycotoxins: determination of a deoxynivalenol glucoside in artificially and naturally contaminated wheat by liquid chromatography-tandem mass spectrometry. J Agr Food Chem 2005;53:3421-5. doi: 10.1021/jf047798g
  17. 17. Generotti S, Cirlini M, Šarkanj B, Sulyok M, Berthiller F, Dall’Asta C, Suman M. Formulation and processing factors affecting trichothecene mycotoxins within industrial biscuitmaking. Food Chem 2017;229:597-603. doi: 10.1016/j. foodchem.2017.02.115
  18. 18. Di Mavungu JD, De Saeger S. Masked mycotoxins in food and feed: challenges and analytical approaches. In: De Saeger S, editor. Determining mycotoxins and mycotoxigenic fungi in food feed. Cambridge: Woodhead Publishing Ltd; 2011; p. 385-400. doi: 10.1533/9780857090973.5.387
  19. 19. Kluger B, Bueschl C, Lemmens M, Michlmayr H, Malachova A, Koutnik A, Maloku I, Berthiller F, Adam G, Krska R, Schuhmacher R. Biotransformation of the mycotoxin deoxynivalenol in Fusarium resistant and susceptible near isogenic wheat lines. PLoS One 2015;10(3):e0119656. doi: 10.1371/journal.pone.0119656
  20. 20. Warth B, Fruhmann P, Wiesenberger G, Kluger B, Sarkanj B, Lemmens M, Hametner C, Fröhlich J, Adam G, Krska R, Schuhmacher R. Deoxynivalenol-sulfates: identification and quantification of novel conjugated (masked) mycotoxins in wheat. Anal Bioanal Chem 2015;407:1033-9. doi: 10.1007/s00216-014-8340-4
  21. 21. Warth B, Favero G Del, Wiesenberger G, Puntscher H, Woelflingseder L, Fruhmann P, Sarkanj B, Krska R, Schuhmacher R, Adam G, Marko D. Identification of a novel human deoxynivalenol metabolite enhancing proliferation of intestinal and urinary bladder cells. Sci Rep-UK 2016;6:33954. doi: 10.1038/srep33854
  22. 22. Stanic A, Uhlig S, Sandvik M, Rise F, Wilkins AL, Miles CO. Characterization of deoxynivalenol-glutathione conjugates using nuclear magnetic resonance spectroscopy and liquid chromatography-high-resolution mass spectrometry. J Agr Food Chem 2016;64:6903-10. doi: 10.1021/acs.jafc.6b02853
  23. 23. Uhlig S, Stanic A, Hofgaard IS, Kluger B, Schuhmacher R, Miles CO. Glutathione-conjugates of deoxynivalenol in naturally contaminated grain are primarily linked via the epoxide group. Toxins 2016;8:329. doi: 10.3390/toxins8110329
  24. 24. Dellafiora L, Dall’Asta C. Masked mycotoxins: An emerging issue that makes renegotiable what is ordinary. Food Chem 2016;213:534-5. doi: 10.1016/j.foodchem.2016.06.112
  25. 25. European Food Safety Authority (EFSA). Deoxynivalenol in food and feed: occurrence and exposure. EFSA J 2013;11:3379-434. doi: 10.2903/j.efsa.2013.3379
  26. 26. European Food Safety Authority (EFSA). Appropriateness to set a group health-based guidance value for zearalenone and its modified forms. Panel on Contaminants in the Food Chain (CONTAM). EFSA J 2016;14:4425. doi: 10.2903/j.efsa.2016.4425
  27. 27. Lattanzio VMT, Visconti A, Haidukowski M, Pascale M. Identification and characterization of new Fusarium masked contaminated wheat and oats by liquid chromatography-highresolution mass spectrometry. J Mass Spectrom 2012;47:466-75. doi: 10.1002/jms.2980
  28. 28. Nakagawa H, Ohmichi K, Sakamoto S, Sago Y, Kushiro M, Nagashima H, Yoshida M, Nakajima T. Detection of a new Fusarium masked mycotoxin in wheat grain by highresolution LC-OrbitrapTM MS. Food Addit Contam A 2011;28:1447-56. doi: 10.1080/19440049.2011.597434
  29. 29. Nakagawa H, Sakamoto S, Sago Y, Kushiro M, Nagashima H. Detection of masked mycotoxins derived from type A trichothecenes in corn by high-resolution LC-Orbitrap mass spectrometer. Food Addit Contam A 2013;30:1407-14. doi: 10.1080/19440049.2013.790087
  30. 30. Zachariasova M, Vaclavikova M, Lacina O, Vaclavik L, Hajslova J. Deoxynivalenol oligoglycosides: new “masked” Fusarium toxins occurring in malt, beer, and breadstuff. J Agr Food Chem 2012;60:9280-91. doi: 10.1021/jf302069z
  31. 31. Nakagawa H. Research on mycotoxin glucosides (masked mycotoxins). JSM Mycotoxins 2016;66:21-5. doi: 10.2520/ myco.66.21
  32. 32. Lemmens M, Steiner B, Sulyok M, Nicholson P, Mesterhazy A, Buerstmayr H. Masked mycotoxins: does breeding for enhanced Fusarium head blight resistance result in more deoxynivalenol-3-glucoside in new wheat varieties? World Mycotoxin J 2016;9:741-54. doi: 10.3920/WMJ2015.2029
  33. 33. Soukup ST, Kohn BN, Pfeiffer E, Geisen R, Metzler M, Bunzel M, Kulling SE. Sulfoglucosides as novel modified forms of the mycotoxins alternariol and alternariol monomethyl ether. J Agr Food Chem 2016;64:8892-901. doi: 10.1021/acs.jafc.6b03120
  34. 34. Alexander NJ, McCormick SP, Waalwijk C, Van Der Lee T, Proctor RH. The genetic basis for 3-AC-DON and 15-ACDON trichothecene chemotypes in Fusarium. Fungal Genet Biol 2011;48:485-95. doi: 10.1016/j.fgb.2011.01.003
  35. 35. Yoshizawa T, Morooka N. Biological modification of trichothecene mycotoxins: acetylation and deacetylation of deoxynivalenols by Fusarium spp. Appl Microbiol 1975;29:54-8. PMCID: PMC18691010.1128/am.29.1.54-58.1975186910234156
  36. 36. Prelusky DB, Veira DM, Trenholm HL, Foster BC. Metabolic fate and elimination in milk, urine and bile of deoxynivalenol following administration to the lactating sheep. J Env Sci Health 1987;22:125-48. PMID: 358483810.1080/036012387093725503584838
  37. 37. European Food Safety Authority (EFSA). Opinion of the Scientific Panel on Contaminants in the Food Chain on a request from the Commission (CONTAM) related to Zearalenone as undesirable substance in animal feed. EFSA J 2004;89:1-35. doi: 10.2903/j.efsa.2004.89
  38. 38. Mirocha CJ, Pathre SV, Robison TS. Comparative metabolism of zearalenone and transmission into bovine milk. Food Cosmet Toxicol 1981;19:25-30. doi: 10.1016/0015-6264(81)90299-6
  39. 39. Olsen M, Mirocha CJ, Abbas HK, Johansson B. Metabolism of high concentrations of dietary zearalenone by young male turkey poults. Poultry Sci 1986;65:1905-10. doi: 10.3382/ps.0651905
  40. 40. Šarkanj B, Warth B, Uhlig S, Abia WA, Sulyok M, Klapec T, et al. Urinary analysis reveals high deoxynivalenol exposure in pregnant women from Croatia. Food Chem Toxicol 2013;62:231-7. doi: 10.1016/j.fct.2013.08.043
  41. 41. Meky FA, Turner PC, Ashcroft AE, Miller JD, Qiao YL, Roth MJ, Wild CP. Development of a urinary biomarker of human exposure to deoxynivalenol. Food Chem Toxicol 2003;41:265-73. doi: 10.1016/S0278-6915(02)00228-4
  42. 42. Warth B, Sulyok M, Berthiller F, Schuhmacher R, Krska R. New insights into the human metabolism of the Fusarium mycotoxins deoxynivalenol and zearalenone. Toxicol Lett 2013;220:88-94. doi: 10.1016/j.toxlet.2013.04.012
  43. 43. Maul R, Warth B, Kant J-S, Schebb NH, Krska R, Koch M, Sulyok M. Investigation of the hepatic glucuronidation pattern of the Fusarium mycotoxin deoxynivalenol in various species. Chem Res Toxicol 2012;25:2715-7. doi: 10.1021/tx300348x
  44. 44. De Boevre M, Njumbe Ediage E, Van Pouckea C, De Saeger S. Chapter 4: Untargeted analysis of modified mycotoxins using high-resolution mass spectrometry. In: Dall’Asta C, Berthiller F, editors. Masked mycotoxins in food - formation, occurrence and toxicological relevance. Cambridge: The Royal Society of Chemistry; 2016. p. 50-72. doi: 10.1039/9781782622574-00050
  45. 45. Klapec T, Šarkanj B, Banjari I, Strelec I. Urinary ochratoxin A and ochratoxin alpha in pregnant women. Food Chem Toxicol 2012; 50:4487-92. https://doi.org/10.1016/j.fct.2012.09.03010.1016/j.fct.2012.09.03023041474
  46. 46. Suman M, Generotti S. Chapter 5: Transformation of mycotoxins upon food processing: Masking, binding and degradation phenomena. In: Dall’Asta C, Berthiller F, editors. Masked mycotoxins in food - formation, occurrence and toxicological relevance. Cambridge: The Royal Society of Chemistry; 2016. p. 73-96. doi: 10.1039/9781782622574-00073
  47. 47. Bittner A, Cramer B, Humpf H-U. Matrix binding of ochratoxin A during roasting. J Agr Food Chem 2013;61:12737-43. doi: 10.1021/jf403984x
  48. 48. Crews C, Jane S, Donald MAC. Chapter 2: Natural Occurrence of Masked Mycotoxins. In: Dall’Asta C, Berthiller F, editors. Masked mycotoxins in food - formation, occurrence and toxicological relevance. Cambridge: The Royal Society of Chemistry; 2016. p. 14-31. doi: 10.1039/9781782622574-00014
  49. 49. Humpf HU, Voss KA. Effects of thermal food processing on the chemical structure and toxicity of fumonisin mycotoxins. Mol Nutr Food Res 2004;48:255-69. doi: 10.1002/mnfr.200400033
  50. 50. Dall’Asta C, Battilani P. Fumonisins and their modified forms, a matter of concern in future scenario? World Mycotoxin J 2016;9:727-39. doi: 10.3920/WMJ2016.2058
  51. 51. Howard PC, Churchwell MI, Couch LH, Marques MM, Doerge DR. Formation of N-(carboxymethyl)fumonisin B1, following the reaction of fumonisin B1 with reducing sugars. J Agr Food Chem 1998;46:3546-57. doi: 10.1021/jf980194q
  52. 52. Seefelder W, Hartl M, Humpf H-U. Determination of N-(carboxymethyl)fumonisin B1 in corn products by liquid chromatography/electrospray ionization-mass spectrometry. J Agr Food Chem 2001;49:2146-51. doi: 10.1021/jf001429c
  53. 53. Hartl M, Humpf HU. Toxicity assessment of fumonisins using the brine shrimp (Artemia salina) bioassay. Food Chem Toxicol 2000;38:1097-102. doi: 10.1016/S0278-6915(00)00112-5
  54. 54. Bryła M, Roszko M, Szymczyk K, Jędrzejczak R, Obiedziński MW. Fumonisins and their masked forms in maize products. Food Control 2016;59:619-27. doi: 10.1016/j.foodcont.2015.06.032
  55. 55. Voss K, Ryu D, Jackson L, Riley R, Gelineau-Van Waes J. Reduction of fumonisin toxicity by extrusion and nixtamalization (Alkaline Cooking). J Agr Food Chem 2017;65:7088-96. doi: 10.1021/acs.jafc.6b05761
  56. 56. Bryła M, Waśkiewicz A, Szymczyk K, Jędrzejczak R. Effects of pH and temperature on the stability of fumonisins in maize products. Toxins 2017;9:88. doi: 10.3390/toxins9030088
  57. 57. Bryła M, Roszko M, Szymczyk K, Jędrzejczak R, Bieta Słowik E, Obiedzinki MW. Effect of baking on reduction of free and hidden fumonisins in gluten-free bread. J Agr Food Chem 2014;62:10341-7. doi: 10.1021/jf504077m
  58. 58. Dall’Asta C, Mangia M, Berthiller F, Molinelli A, Sulyok M, Schuhmacher R, Krska R, Galaverna G, Dossena A, Marchelli R. Difficulties in fumonisin determination: the issue of hidden fumonisins. Anal Bioanal Chem 2009;395:1335-45. doi: 10.1007/s00216-009-2933-3
  59. 59. Falavigna C, Cinirni M, Galaverna G, Dall’Asta C. Masked fumonisins in processed food: co-occurrence of hidden and bound forms and their stability under digestive conditions. World Mycotoxin J 2012;5:325-34. doi: 10.3920/WMJ2012.1403
  60. 60. Scott PM. Recent research on fumonisins: a review. Food AdditContamA2012;29:242-8.doi:10.1080/19440049.2010.546000
  61. 61. Vidal A, Morales H, Sanchis V, Ramos AJ, Marín S. Stability of DON and OTA during the breadmaking process and determination of process and performance criteria. Food Control 2014;40:234-42. doi: 10.1016/j.foodcont.2013.11.044
  62. 62. Simsek S, Burgess K, Whitney KL, Gu Y, Qian SY. Analysis of deoxynivalenol and deoxynivalenol-3-glucoside in wheat. Food Control 2012;26:287-92. doi: 10.1016/j.foodcont.2012.01.056
  63. 63. Kostelanska M, Dzuman Z, Malachova A, Skerikova A, Hajslova J. Effects of milling and baking technologies on levels of deoxynivalenol and its masked form deoxynivalenol-3-glucoside. J Agr Food Chem 2011;59:9303-12. doi: 10.1021/jf202428f
  64. 64. Kostelanska M, Hajslova J, Zachariasova M, Malachova A, Kalachova K, Poustka J, Fiala J, Scott PM, Berthiller F, Krska R. Occurrence of deoxynivalenol and its major conjugate, deoxynivalenol-3-glucoside, in beer and some brewing intermediates. J Agr Food Chem 2009;57:3187-94. doi: 10.1021/jf803749u
  65. 65. Lancova K, Hajslova J, Poustka J, Krplova A, Zachariasova M, Dostalek P, Sachambula L. Transfer of Fusarium mycotoxins and “masked” deoxynivalenol (deoxynivalenol- 3-glucoside) from field barley through malt to beer. Food AdditContamA2008;25:732-44.doi: 10.1080/02652030701779625
  66. 66. Varga E, Malachova A, Schwartz H, Krska R, Berthiller F. Survey of deoxynivalenol and its conjugates deoxynivalenol- 3-glucoside and 3-acetyl- deoxynivalenol in 374 beer samples. Food Addit Contam A 2013;30:137-46. doi: 10.1080/19440049.2012.726745
  67. 67. Karlovsky P, Suman M, Berthiller F, De Meester J, Eisenbrand G, Perrin I, Oswald IP, Speijers G, Chiodini A, Recker T, Dussor P. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res 2016;32:179-205. doi: 10.1007/s12550-016-0257-7
  68. 68. Malachova A, Dzuman Z, Veprikova Z, Vaclavikova M, Zachariasova M, Hajslova J. Deoxynivalenol, deoxynivalenol- 3-glucoside, and enniatins: the major mycotoxins found in cereal-based products on the Czech market. J Agr Food Chem 2011;59:12990-7. doi: 10.1021/jf203391x
  69. 69. De Boevre M, Di Mavungu JD, Maene P, Audenaert K, Deforce D, Haesaert G, Eeckhout M, Callebaut A, Berthiller F, Van Peteghem C, De Saeger S. Development and validation of an LC-MS/MS method for the simultaneous determination of deoxynivalenol, zearalenone, T-2-toxin and some masked metabolites in different cereals and cereal-derived food. Food Addit Contam A2012;29:819-35.doi: 10.1080/19440049.2012.656707
  70. 70. Šarkanj B, Varga E, Habschied K, Krstanović V, Sakač N. Preliminarno praćenje pojavnosti mikotoksina u kukuruzu na području kontinentalne Hrvatske [Preliminarily research on the occurrence of mycotoxins in maize samples in continental Croatia, in Croatian]. In: Stipišević B, Sorić R, editors. Proceedings & abstracts of 5th international scientific/professional conference Agriculture in nature and environment protection; 4-6 June 2012. Vukovar, Croatia. Osijek: Glas Slavonije d.d.; 2012. p. 264-9.
  71. 71. Zachariasova M, Hajslova J, Kostelanska M, Poustka J, Krplova A, Cuhra P, Hochel I. Deoxynivalenol and its conjugates in beer: A critical assessment of data obtained by enzyme-linked immunosorbent assay and liquid chromatography coupled to tandem mass spectrometry. Anal Chim Acta 2008;625:77-86. doi: 10.1016/j.aca.2008.07.014
  72. 72. Gonçalves C, Stroka J. Cross-reactivity features of deoxynivalenol (DON)-targeted immunoaffinity columns aiming to achieve simultaneous analysis of DON and major conjugates in cereal samples. Food Addit Contam A 2016;33:1053-62. doi: 10.1080/19440049.2016.1188436
  73. 73. Sulyok M, Berthiller F, Krska R, Schuhmacher R. Development and validation of a liquid chromatography/ tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize. Rapid Commun Mass Sp 2006;20:2649-59. doi: 10.1002/rcm.2640
  74. 74. Jackson LC, Kudupoje MB, Yiannikouris A. Simultaneous multiple mycotoxin quantification in feed samples using three isotopically labeled internal standards applied for isotopic dilution and data normalization through ultra-performance liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun Mass Sp 2012;26:2697-713. doi: 10.1002/rcm.6405
  75. 75. Malachová A, Sulyok M, Beltrán E, Berthiller F, Krska R. Optimization and validation of a quantitative liquid chromatography-tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four model food matrices. J Chromatogr A 2014;1362:145-56. doi: 10.1016/j.chroma.2014.08.037
  76. 76. Berthiller F, Berera C, Iha M, Krska R, Lattanzio V, MacDonald S, Malone RJ, Maragos C, Solfrizzo M, Stranska- Zachariasova M, Stroka J, Tittlemier SA. Developments in mycotoxin analysis: an update for 2015-2016. World Mycotoxin J 2017;10:5-29. doi: 10.3920/WMJ2016.2138
  77. 77. Zachariasova M, Lacina O, Malachova A, Kostelanska M, Poustka J, Godula M, Hajslova J. Novel approaches in analysis of Fusarium mycotoxins in cereals employing ultra performance liquid chromatography coupled with high resolution mass spectrometry. Anal Chim Acta 2010;662:51-61. doi: 10.1016/j.aca.2009.12.034
  78. 78. Krska R, Sulyok M, Berthiller F, Schuhmacher R. Mycotoxin testing: from multi-toxin analysis to metabolomics. JSM Mycotoxins 2017;67:11-6. doi: 10.2520/myco.67-1-8
  79. 79. Dall’Erta A, Cirlini M, Dall’Asta M, Del Rio D, Galaverna G, Dall’Asta C. Masked mycotoxins are efficiently hydrolyzed by human colonic microbiota releasing their aglycones. Chem Res Toxicol 2013;26:305-12. doi: 10.1021/tx300438c
  80. 80. De Boevre M, Graniczkowska K, De Saeger S. Metabolism of modified mycotoxins studied through in vitro and in vivo models: An overview. Toxicol Lett 2015;233:24-8. doi: 10.1016/j.toxlet.2014.12.011
  81. 81. Gratz SW. Do plant-bound masked mycotoxins contribute to toxicity? Toxins 2017;9:85. doi: 10.3390/toxins9030085
  82. 82. Cirlini M, Barilli A, Galaverna G, Michlmayr H, Adam G, Berthiller F, Dall’Asta C. Study on the uptake and deglycosylation of the masked forms of zearalenone in human intestinal Caco-2 cells. Food Chem Toxicol 2016;98:232-9. doi: 10.1016/j.fct.2016.11.003
  83. 83. Pierron A, Mimoun S, Murate LS, Loiseau N, Lippi Y, Bracarense APFL, Liaubet L, Schatzmayr G, Berthiller F, Moll WD, Oswald IP Intestinal toxicity of the masked mycotoxin deoxynivalenol-3-β-d-glucoside. Arch Toxicol 2016;90:2037-46. doi: 10.1007/s00204-015-1592-8
  84. 84. Dall’Asta C, Falavigna C, Galaverna G, Dossena A, Marchelli R. In vitro digestion assay for determination of hidden fumonisins in maize. J Agr Food Chem 2010;58:12042-7. doi: 10.1021/jf103799q
  85. 85. Broekaert N, Devreese M, Demeyere K, Berthiller F, Michlmayr H, Varga E, Adam G, Meyer E, Croubels S. Comparative in vitro cytotoxicity of modified deoxynivalenol on porcine intestinal epithelial cells. Food Chem Toxicol 2016;95:103-9. doi: 10.1016/j.fct.2016.06.012
  86. 86. Dellafiora L, Galaverna G, Righi F, Cozzini P, Dall’asta C. Assessing the hydrolytic fate of the masked mycotoxin zearalenone-14-glucoside - A warning light for the need to look at the “maskedome”. Food Chem Toxicol 2017;99:9-16. doi: 10.1016/j.fct.2016.11.013
  87. 87. Gareis M, Bauer J, Thiem J, Plank G, Grabley S, Gedek B. Cleavage of zearalenone-glycoside, a masked mycotoxin, during digestion in swine. J Vet Med B 1990;37:236-40. doi: 10.1111/j.1439-0450.1990.tb01052.x
  88. 88. Veršilovskis A, Geys J, Huybrechts B, Goossens E, De Saeger S, Callebaut A. Simultaneous determination of masked forms of deoxynivalenol and zearalenone after oral dosing in rats by LC-MS/MS. World Mycotoxin J 2012;5:303-18. doi: 10.3920/WMJ2012.1411
  89. 89. Nagl V, Schwartz H, Krska R, Moll W-D, Knasmüller S, Ritzmann M, Adam G, Berthiller F. Metabolism of the masked mycotoxin deoxynivalenol-3-glucoside in rats. Toxicol Lett 2012;213:367-73. doi: 10.1016/j.toxlet.2012.07.024
  90. 90. Nagl V, Woechtl B, Schwartz-Zimmermann HE, Hennig- Pauka I, Moll W-D, Adam G, Berthiller F. Metabolism of the masked mycotoxin deoxynivalenol-3-glucoside in pigs. Toxicol Lett 2014;229:190-7. doi: 10.1016/j.toxlet.2014.06.032
  91. 91. Han Z, Tangni EK, Di Mavugnu JD, Vanhaecke L, De Saeger S, Wu A, Callebaut A. In vitro glucuronidation of ochratoxin A by rat liver microsomes. Toxins 2013;5:2671-85. doi: 10.3390/toxins5122671
  92. 92. Yoshinari T, Sakuda S, Furihata K, Furusawa H, Ohnishi T, Sugita-Konishi Y, Ishizaki N, Terajima J. Structural determination of a nivalenol glucoside and development of an analytical method for the simultaneous determination of nivalenol and deoxynivalenol, and their glucosides, in wheat. J Agric Food Chem 2014;62:1174-80. doi: 10.1021/jf4048644.
DOI: https://doi.org/10.2478/aiht-2018-69-3108 | Journal eISSN: 1848-6312 | Journal ISSN: 0004-1254
Language: English, Croatian, Slovenian
Page range: 196 - 214
Submitted on: Feb 1, 2018
Accepted on: May 1, 2018
Published on: Oct 3, 2018
Published by: Institute for Medical Research and Occupational Health
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Marija Kovač, Drago Šubarić, Mateja Bulaić, Tihomir Kovač, Bojan Šarkanj, published by Institute for Medical Research and Occupational Health
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.