Have a personal or library account? Click to login
Natural Preservation of Horticultural Produce: Antimicrobial Efficacy of Thymus hiemalis Essential Oil in in Vitro and in Situ Models Cover

Natural Preservation of Horticultural Produce: Antimicrobial Efficacy of Thymus hiemalis Essential Oil in in Vitro and in Situ Models

Open Access
|Nov 2025

References

  1. Ben Miri, Y. (2025). Essential Oils: Chemical Composition and Diverse Biological Activities : A Comprehensive Review. Natural Product Communications, 20(1), 1934578X241311790. https://doi.org/10.1177/1934578X241311790
  2. Bisht, A., & Singh, S. P. (2024). Postharvest Losses and Management of Horticultural Produce: A Review. Journal of Scientific Research and Reports, 30(3), 305–320. https://doi.org/10.9734/jsrr/2024/v30i31881
  3. Bozin, B., Mimica-Dukic, N., Simin, N., & Anackov, G. (2006). Characterization of the Volatile Composition of Essential Oils of Some Lamiaceae Spices and the Antimicrobial and Antioxidant Activities of the Entire Oils. Journal of Agricultural and Food Chemistry, 54(5), 1822–1828. https://doi.org/10.1021/jf051922u
  4. Bukovská, A., Cikoš, Š., Juhás, Š., Il’ková, G., Rehák, P., & Koppel, J. (2007). Effects of a Combination of Thyme and Oregano Essential Oils on TNBS-Induced Colitis in Mice. Mediators of Inflammation, 2007, 1–9. https://doi.org/10.1155/2007/23296
  5. Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods – a review. International Journal of Food Microbiology, 94(3), 223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
  6. De Martino, L., Bruno, M., Formisano, C., De Feo, V., Napolitano, F., Rosselli, S., & Senatore, F. (2009). Chemical Composition and Antimicrobial Activity of the Essential Oils from Two Species of Thymus Growing Wild in Southern Italy. Molecules, 14(11), 4614–4624. https://doi.org/10.3390/molecules14114614
  7. Dorman, H. J. D., & Deans, S. G. (2000). Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88(2), 308–316. https://doi.org/10.1046/j.1365-2672.2000.00969.x
  8. Etri, K., & Pluhár, Z. (2024). Exploring Chemical Variability in the Essential Oils of the Thymus Genus. Plants, 13(10), 1375. https://doi.org/10.3390/plants13101375
  9. Fenta, L., & Mekonnen, H. (2024). Microbial Biofungicides as a Substitute for Chemical Fungicides in the Control of Phytopathogens: Current Perspectives and Research Directions. Scientifica, 2024, 1–12. https://doi.org/10.1155/2024/5322696
  10. Hossain, T. J. (2024). Methods for screening and evaluation of antimicrobial activity: A review of protocols, advantages, and limitations. European Journal of Microbiology and Immunology, 14(2), 97–115. https://doi.org/10.1556/1886.2024.00035
  11. Kačániová, M., Galovičová, L., Valková, V., Ďuranová, H., Borotová, P., Štefániková, J., Vukovic, N. L., Vukic, M., Kunová, S., Felsöciová, S., Miklášová, K., Savitskaya, T., & Grinshpan, D. (2021). Chemical composition and biological activity of Salvia officinalis essential oil. Acta Horticulturae et Regiotecturae, 24(2), 81–88. https://doi.org/10.2478/ahr-2021-0028
  12. Kluz, M. I., & Vukovic, N. (2025). Antimicrobial Activity of Jasminum grandiflorum Absolute in vitro and in situ Study against Phytopathogenic Bacteria. Acta Horticulturae et Regiotecturae, 28(1), 66–71. https://doi.org/10.2478/ahr-2025-0008
  13. Laird, K., & Phillips, C. (2012). Vapour phase: A potential future use for essential oils as antimicrobials? Essential oil vapours and their antimicrobial activity. Letters in Applied Microbiology, 54(3), 169–174. https://doi.org/10.1111/j.1472-765X.2011.03190.x
  14. Lopez-Reyes, J. G., Spadaro, D., Prelle, A., Garibaldi, A., & Gullino, M. L. (2013). Efficacy of Plant Essential Oils on Postharvest Control of Rots Caused by Fungi on Different Stone Fruits In Vivo. Journal of Food Protection, 76(4), 631–639. https://doi.org/10.4315/0362-028X.JFP-12-342
  15. Nazzaro, F., Fratianni, F., Coppola, R., & Feo, V. D. (2017). Essential Oils and Antifungal Activity. Pharmaceuticals, 10(4), 86. https://doi.org/10.3390/ph10040086
  16. Opara, U. L., & Ogra, I. O. (2024). An Introduction to Postharvest Handling Technology of Fresh Fruits and Vegetables. S. Ali, S. A. Mir, B. N. Dar, & S. Ejaz. Sustainable Postharvest Technologies for Fruits and Vegetables (1st ed., pp. 3–41). https://doi.org/10.1201/9781003370376-2
  17. Passone, M. A., Girardi, N. S., Ferrand, C. A., & Etcheverry, M. (2012). In vitro evaluation of five essential oils as botanical fungitoxicants for the protection of stored peanuts from Aspergillus flavus and A. parasiticus contamination. International Biodeterioration & Biodegradation, 70, 82–88. https://doi.org/10.1016/j.ibiod.2011.11.017
  18. Reyes-Jurado, F., Navarro-Cruz, A. R., Ochoa-Velasco, C. E., Palou, E., López-Malo, A., & Ávila-Sosa, R. (2020). Essential oils in vapor phase as alternative antimicrobials: A review. Critical Reviews in Food Science and Nutrition, 60(10), 1641–1650. https://doi.org/10.1080/10408398.2019.1586641
  19. Rios, J. L., Recio, M. C., & Villar, A. (1988). Screening methods for natural products with antimicrobial activity: A review of the literature. Journal of Ethnopharmacology, 23(2–3), 127–149. https://doi.org/10.1016/0378-8741(88)90001-3
  20. Rota, M. C., Herrera, A., Martínez, R. M., Sotomayor, J. A., & Jordán, M. J. (2008). Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils. Food Control, 19(7), 681–687. https://doi.org/10.1016/j.foodcont.2007.07.007
  21. Salehi, B., Upadhyay, S., Erdogan Orhan, I., Kumar Jugran, A., L.D. Jayaweera, S., A. Dias, D., Sharopov, F., Taheri, Y., Martins, N., Baghalpour, N., C. Cho, W., & Sharifi-Rad, J. (2019). Therapeutic Potential of α- and β-Pinene: A Miracle Gift of Nature. Biomolecules, 9(11), 738. https://doi.org/10.3390/biom9110738
  22. Semeniuc, C. A., Pop, C. R., & Rotar, A. M. (2017). Antibacterial activity and interactions of plant essential oil combinations against Gram-positive and Gram-negative bacteria. Journal of Food and Drug Analysis, 25(2), 403–408. https://doi.org/10.1016/j.jfda.2016.06.002
  23. Sharma, A., Rajendran, S., Srivastava, A., Sharma, S., & Kundu, B. (2017). Antifungal activities of selected essential oils against Fusarium oxysporum f. Sp. Lycopersici 1322, with emphasis on Syzygium aromaticum essential oil. Journal of Bioscience and Bioengineering, 123(3), 308–313. https://doi.org/10.1016/j.jbiosc.2016.09.011
  24. Sokolić-Mihalak, D., Frece, J., Slavica, A., Delaš, F., Pavlović, H., & Markov, K. (2012). The Effects Of Wild Thyme (Thymus serpyllum L.) Essential Oil Components Against Ochratoxin-Producing Aspergilli/Majčina Dušica (Thymus serpyllum L.) I Njezine Komponente Protiv Okratoksikotvornih Vrsta Aspergillusa. Archives of Industrial Hygiene and Toxicology, 63(4), 457–462. https://doi.org/10.2478/10004-1254-63-2012-2309
  25. Tzortzakis, N. G., & Economakis, C. D. (2007). Antifungal activity of lemongrass (Cympopogon citratus L.) essential oil against key postharvest pathogens. Innovative Food Science & Emerging Technologies, 8(2), 253–258. https://doi.org/10.1016/j.ifset.2007.01.002
  26. Zubair, M., Shahzad, S., Hussain, A., Pradhan, R. A., Arshad, M., & Ullah, A. (2022). Current Trends in the Utilization of Essential Oils for Polysaccharide- and Protein-Derived Food Packaging Materials. Polymers, 14(6), 1146. https://doi.org/10.3390/polym14061146
DOI: https://doi.org/10.2478/ahr-2025-0019 | Journal eISSN: 1338-5259 | Journal ISSN: 1335-2563
Language: English
Page range: 150 - 158
Submitted on: Jun 7, 2025
Accepted on: Sep 10, 2025
Published on: Nov 18, 2025
Published by: Slovak University of Agriculture in Nitra
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Joel H. Elizondo-Luevano, Guadalupe Gutiérrez-Soto, Iosvany López-Sandin, Georgia M. González-Meza, Lucio Galaviz-Silva, Catalina Leos-Rivas, Osvelia E. Rodríguez-Luis, Julio López-Abán, published by Slovak University of Agriculture in Nitra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.